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Abstract

This paper studies the variance risk premium from a new perspective by disaggregating
the total premium into upper and lower semivariance premia. To this end, we provide
novel tools for computing conditional expectations using traded options as well as moment
generating functions. Across a dataset of global stock market indices, we find that the
variance premium is almost exclusively driven by downside risk. Our results are robust
with respect to the sample period. These findings substantiate the hypothesis found in the
literature that the variance premium is largely driven by the left tail of the index return
distribution.

∗OVGU Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
∗WHU – Otto Beisheim School of Management, Campus Vallendar, Burgplatz 2, 56179
Vallendar, Germany.
Corresponding author: matthias.held@whu.edu, +492616509395

Keywords: variance risk premium, semivariance, derivatives

1



It is a well established fact in modern asset pricing theory that stock market indices feature
substantial and significantly negative variance risk premia. The variance risk premium is com-
monly defined as the difference between the physical and risk neutral expectations of future
return variance. Economically, this difference can be explained by investors’ concern about
uncertainty in macroeconomic shocks, against which market participants are willing to insure
themselves. In this paper, we propose a novel method to study the variance premia across
markets by splitting the implied and physical return variances into upper and lower semivari-
ances. Thereby we provide further insights into which part of return uncertainty, i.e. upside or
downside risk, is effectively priced by the market.

Several authors have analyzed the variance risk premium since its first detailed description
by Bakshi and Kapadia (2003). Carr and Wu (2009) study an exhaustive set of U.S. stock
market indices and individual stocks and find significantly negative variance risk premia in
indices and large stocks. Their results hint at the existence of a heavily priced systematic
variance risk factor in the stock markets that is not accounted for by the factors of Fama and
French (1993). In a semiparametric stochastic volatility model applied to high-frequency data,
Todorov (2010) and Bollerslev and Todorov (2011) find that jumps have a significant influence
on variance risk premia. Further, they find that prices of jump risks increase after large market
shocks. They show that a large fraction of the variance risk premium may be ascribed to tail
and jump risk compensation.

Drechsler and Yaron (2011) argue that the variance index, e.g. VIX, is a measure of the
market’s concerns of surprise economic shocks. Assuming Epstein and Zin (1989) preferences
combined with time-varying economic uncertainty, they are able to explain the time-varying
variance premium. They further argue that the representative investor must feature a preference
for early resolution of uncertainty (a trait which is not found in standard CRRA utility) com-
bined with stochastic volatility in consumption. In a related paper, Drechsler (2013) extends
the robust control methods of Hansen and Sargent (2001), and introduces model uncertainty
– or Knightian uncertainty – as a potential explanation of risk premia in general. Here, the
representative agent is ambiguity averse and considers only the worst-case combination of pa-
rameters describing the economy. This model is able to produce large premia in option prices
and variance risks which are driven by variations in the level of uncertainty.

Eraker and Shaliastovich (2008) develop a method for designing equilibrium pricing mod-
els in continuous time when state processes belong to the class of affine jump diffusion models.
In this way they enable users to employ the advanced estimation and pricing methods available
for affine processes, e.g. the transform methods of Duffie et al. (2000) and the fast option pric-
ing methods of Carr and Madan (1999). Based on this framework, Eraker (2009) shows that
stochastic volatility combined with jumps in volatility is able to capture the variance premium
effect found in the VIX.

The variance risk premium quantifies the difference between physical and risk neutral ex-
pectations of the return variance, thereby giving probability mass to positive and negative
returns, i.e. above-average and below-average returns, under both measures. In this paper,
we split the variances into upper and lower semivariances and ask whether the variance risk
premium is distributed equally across these two. For this purpose, we offer an extension to
the model free methods of Carr and Madan (2001) and Bakshi et al. (2003), who develop a
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method to replicate smooth functions of the future asset price, e.g. return moments, via a static
portfolio of traded bonds, futures and European call and put options. We extend these meth-
ods and are the first to compute option implied semivariance levels and consequently relate
them to their physical counterparts. We find that upper semivariances do not command any
statistically significant premium, whereas lower semivariances generate a statistically signifi-
cant and highly negative premium. Our results suggest that the commonly observed negative
variance premium is solely driven by the lower semivariance of the index return distribution.
In addition to studying semivariances, we also analyze trading returns related to semivariance
positions. To this end, we price second upper (lower) semimoment contracts, i.e. contracts
that pay the squared monthly return if it is positive (negative). Here, we again find substantial
negative premia only for the lower semimoment contract, and no statistically significant return
from upper semimoment contracts. Our results are robust across global market indices and
with respect to the period under consideration.

At this point, we have to distinguish the concepts of variance and variation encountered in
the literature. The variation process is defined as the pathwise limit of squared innovations in a
stochastic variable. Very informally, the quadratic variation of y = log(S) for the period [0,T ]
is

lim
Δt→0

N= T
Δt

∑
k=0

(y(k+1)Δt − ykΔt)
2.

From a mathematical point of view, the expected total variation of an asset’s return process
over a time period equals its expected return variance over that period if the process is square
integrable, see Du and Kapadia (2012). The definitions of semivariance and semimoments
which we apply in this paper do not allow for analysis via limiting arguments. Instead, we
consider paths with final levels above or below a predefined threshold, i.e. we analyze expec-
tations of the form

E
(
(yT − y0)

21{yT≤y0}
)

or E
(
(yT − y0)

21{yT>y0}
)
.

In contrast to the equality relationship between variance and expected variation outlined above,
the expectation of positive (negative) variation does not equal positive (negative) semivariance
in general.

The remainder of the paper is structured as follows. In the next section, we present meth-
ods to infer exact risk neutral semivariances and semimoments from prices of traded option
contracts. Section 2 discusses the expected levels of semimoment and semivariance premia in
a general asset pricing framework and presents an example within the class of AJD processes
along the lines of Eraker and Shaliastovich (2008). Further, we present a method to evalu-
ate conditional expected semimoments for a given moment generating function via Fourier
transform methods. In sections 3 and 4 we apply our methods and estimate the semimoment
and semivariance premia across an array of global equity indices, to which we add further
robustness in section 5.
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1 Semivariance vs. Second Semimoment
The objective of this paper is to present and explain differences in market pricing and re-
turn characteristics of upside and downside variance and second semimoment contracts. This
section fixes the mathematical definitions and offers pricing theorems as well as related propo-
sitions employed in the subsequent empirical analysis.

Fix the probability space (Ω, F, P), where P is the objective (or physical) probability
measure and F= (Ft)t≥0 is the information filtration to which all processes are adapted, and
let Q denote the equivalent risk neutral (i.e. pricing) measure. Et(·) = E( ·|Ft) denotes the
conditional expectation. For ease of exposition, and when no confusion may arise, we will
simply use E(·) instead. Further, EP(·) and EQ(·) denote the expectation operators under
the physical and risk neutral measure, respectively. Also, let Z denote a continuous random
variable with associated probability density function f (z) with support on R. The kth lower
semimoment of Z is commonly defined as:

SM−(k)≡ E
(

Zk1{Z≤0}
)
=

ˆ 0

−∞
zk f (z)dz.

Equivalently, SM+(k) denotes the kth upper semimoment of Z. Clearly,

SM−(k)+SM+(k) =
ˆ 0

−∞
zk f (z)dz+

ˆ ∞

0
zk f (z)dz =

ˆ ∞

−∞
zk f (z)dx = E(Zk)

recovers the kth moment of the random variable Z.
Now let ST denote the random asset price at future time T . We follow Carr and Madan

(2001) and Bakshi et al. (2003) and assume that there exists an option series exhibiting a
sufficiently dense set of strike levels X for out of the money (OTM) call and put options within
an adequate range around the underlying asset’s current price S0. Given the maturity matched
discount factor B0(T ), Theorem 1 yields the risk neutral expectations of second lower and
upper return semimoments, and the corresponding prices.

Theorem 1 (Risk neutral second semimoments). The risk neutral expectation of the second
lower return semimoment is

SM−
Q(2) = EQ

(
log

(
ST

S0

)2

1{ST≤S0}

)
=

S0ˆ

0

2
(

1− log
(

X
S0

))
B0 (T )X2 Put(X)dX ,

where B0 (T ) is the value of a zero-coupon bond maturing at time T . Likewise, the risk neutral
expectation of the second upper return semimoment is

SM+
Q(2) = EQ

(
log

(
ST

S0

)2

1{ST>S0}

)
=

∞̂

S0

2
(

1− log
(

X
S0

))
B0 (T )X2 Call(X)dX .

The price of second semimoment contracts can then be recovered via B0(T )SM−
Q
(2) and

B0(T )SM+
Q
(2), respectively.

4



Proof: See appendix A.

The second statistic we consider is the semivariance of the random variable Z. If μ denotes
the expected value of Z, the lower semivariance1 SV− of Z computes to

SV− = E
(
(Z −μ)21{Z≤μ}

)
=

ˆ μ

−∞
(z−μ)2 f (z)dz

and, again, SV+ denotes the upper semivariance of x where

SV−+SV+ =

ˆ μ

−∞
(z−μ)2 f (z)dz+

ˆ ∞

μ
(z−μ)2 f (z)dz = E

(
(Z −μ)2)

recovers the variance of the random variable Z. Theorem 2 details how to recover option
implied semivariances.

Theorem 2 (Risk neutral semivariances). Let μQ be the risk neutral asset return expectation.
Then the asset’s risk neutral lower return semivariance can be computed from option prices
via:

SV−
Q = EQ

((
log

(
ST

S0

)
−μQ

)2

1{
log

(
ST
S0

)
≤μQ

}
)

=

S0eμQˆ

0

1− log
(

X
S0eμQ

)
1
2B0(T )X2

Put(X)dX .

Likewise, the risk neutral upper return semivariance is

SV+
Q = EQ

((
log

(
ST

S0

)
−μQ

)2

1{
log

(
ST
S0

)
>μQ

}
)

=

∞̂

S0eμQ

1− log
(

X
S0eμQ

)
1
2B0(T )X2

Call(X)dX .

Proof: See appendix B.

Note that we can also compute μQ from option prices alone as shown in (6) in appendix B.
Via theorem 2, we can evaluate option implied semivariance levels and compare them to option
implied variances or, if the physical mean is available, to physical variances and semivariances.
Usually, we expect a pronounced difference between implied lower and upper semivariances
of stock market index returns SV−

Q
> SV+

Q
, and we expect this difference to be even more

pronounced when the physical stock market distribution exhibits negative skewness in the first
place. The next section will the difference between Q and P implied return semivariances of
market index asset, which are fully compatible with a rational market equilibrium.

The semivariance comparison requires the drift rates under the physical and risk-neutral
measures. To evaluate the profitability of implementable trading strategies we need to compare
Q and P expectations where the indicator functions use the same pre specified reference level,
such as laid out in theorem 1 with a reference level of zero. The application of theorem 1
in section 4 allows us to compute prices – and thus returns – of positions in (market index)
options that deliver the payoff r2

t 1{rt≤0} where rt = logSt − logSt−1 is the asset’s log return.
Thus, we are able to approximate trading returns from semivariance positions.

1We use the terms lower semivariance or downside variance interchangeably, as well as upper semivariance
and upside variance.
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2 Premia in equilibrium
A natural question that arises from theorems 1 and 2 is how a prevailing, sufficiently rich equi-
librium model would price semivariance and semimoment contracts, i.e. whether (in)significant
negative or positive risk prices are compatible with a rational equilibrium. We first discuss how
semimoments should be priced in equilibrium. Subsequently, we show how risk preferences
can alter the implied (semi)variances when compared to their phyiscal counterparts in a general
equilibrium.

2.1 Premia on second semimoments
Throughtout this paper, we assume that all trading strategies are attainable. We follow the
literature and define the expected premium on the second lower semimoment as

EP

(
log

(
ST

S0

)2

1{ST≤S0}

)
−EQ

(
log

(
ST

S0

)2

1{ST≤S0}

)
, (1)

and the upper second semimoment premium accordingly. For any payoff XT , a standard result
of asset pricing is2

EP(XT )−EQ(XT ) =−CovP (MT ,XT )

B0(T )
,

i.e. the premium to be expected from buying an asset with payoff XT depends solely on
the covariance of that asset’s payoff with the economy’s stochastic discount factor, MT . As
returns to large stock market indices are on average positively correlated with innovations in
consumption growth, second lower semimoment contracts written on them should exhibit a
negative correlation with the stochastic discount factor, thus requiring a negative premium in
equilibrium; the reverse should hold for second upper semimoment contracts. This consitutes
the baseline hypothesis for the empirical section.

2.2 Differences between Q and P semivariances in equilibrium
Under standard CRRA preferences the sole risk source priced by the market is consumption
risk, see Eraker and Shaliastovich (2008). In such a model the variance risk premium can only
be induced by the correlation of the variance process with innovations in consumption. In
particular the variance risk premium is completely insensitive to changes in variance specific
shocks. To induce a more realistic premia structure we instead follow Drechsler and Yaron
(2011), Eraker and Shaliastovich (2008) as well as Eraker (2009) and consider an endow-
ment economy where the representative agent has recursive utility over lifetime consumption
{Ct}∞

t=0 as introduced by Epstein and Zin (1989):

Ut =

[
(1−δ )C

1−γ
θ

t +δ
(

EP
t

(
U1−γ

t+1

)) 1
θ
] θ

1−γ

. (2)

2Cf. Cochrane (2005).
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The agent is fully characterized by her time preference parameter δ , local risk aversion coeffi-
cient γ , and ψ , the intertemporal elasticity of substitution (IES). As θ = 1−γ

1−1/ψ , we obtain the
CRRA pricing kernel for θ = 1. The Euler equation associated with (2) is

EP
t

[
δ θ

(
Ct+1

Ct

)− θ
ψ

R−(1−θ)
c,t+1 Ri,t+1

]
= 1, (3)

where Rc,t is the return on the aggregate wealth portfolio and Ri,t is the return on an arbitrary
asset. In the following we borrow a specific example of an endowment economy from Eraker
and Shaliastovich (2008), in which the consumption, dividend and variance processes have the
continuous dynamics:

dlog(Ct) = μdt +
√

VtdW c
t

dlog(Dt) = φ μdt +φ
√

VtdW c
t +σd

√
VtdW d

t

dVt = κ
(
V −Vt

)
dt +συ

√
VtdW υ

t +ξνdNt

where W c
t ,W d

t ,W ν
t are independent Brownian Motions, Nt is a poisson jump process with in-

tensity l0, and ξν are exponentially distributed jumps with mean μJ . The variance process Vt is
driving diffusions in both, the consumption and dividend processes. Since the state dynamics
belong to the class of affine jump diffusion models one can take advantage of an extensive
research literature on efficient computation methods for pricing in affine models. In order to
obtain explicit pricing formulas in this framework, Eraker and Shaliastovich (2008) derive aux-
iliary parameters that sustain an economic equilibrium. For a wide range of typical preference
parameters found in model calibrations, the pricing kernel Mt associated with the resulting
equilibrium loads negatively on innovations in consumption growth, d log(Ct), and positively
on innovations in economic uncertainty, dVt . Eraker and Shaliastovich (2008) show that the
dynamics of a dividend paying asset’s price process under the physical measure are:

d log(Pt) =
[
φ μ +Bd,ν

(
κ
(
V −Vt

))]
dt (4)

+ φ
√

VtdW c
t +σd

√
VtdW d

t +Bd,νσυ
√

VtdW υ
t +Bd,νξνdNt ,

where Bd,ν is the loading of the price process on the variance process in equilibrium. A broad
stock market index summarizing the whole economy. Therefore calibrations to stock index
return data usually yield positive relationships between consumption and dividends (φ > 0),
whereas the leverage effect Bd,ν is usually negative. Hence, we have a negative correlation
between market index return innovations and the pricing kernel within this model, leading
to negative (positive) premia on lower (upper) semimoment payoffs. Under the risk-neutral
measure Q the price dynamics become

d log(Pt) =
[
φ (μ − γVt)+Bd,ν

(
κ
(
V −Vt

))−λνσ2
νVt

]
dt (5)

+ φ
√

VtdWQ,c
t +σd

√
VtdWQ,d

t +Bd,νσυ
√

VtdWQ,υ
t +Bd,νξQ

ν dNQ
t ,

where WQ,c
t ,WQ,d

t ,WQ,ν
t are independent Brownian Motions under Q, NQ

t is a Poisson jump
process with intensity l0

1+λν μJ
and ξQ

ν are exponentially distributed jumps with mean μJ
1+μJλν

.
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The coefficient λν is the equilibrium price of variance risk, differing from zero only when
θ �= 1. Due to a usually negative market price of variance risk, intensity and distribution of
the jumps differ between the measures, where risk neutral jumps are more pronounced and
occur more often. Due to these changes in price dynamics, the return distribution changes
when switching between P and Q. In particular, this simple model is able to yield differing
physical and risk neutral variances as well as differing upside and downside semivariances
by changing the higher moments of the log return distribution. Hence, differing variances as
well as semivariances are compatible with a general equilibrium. Note that the price dynamics
are affine under both measures, allowing for a swift computation of the moment generating
function of the state process.

The following proposition shows how we can recover semimoments and semivariances
from any moment generating function – and thereby also from the moment generating function
of our affine model – via Fourier transform methods:

Proposition 1 (Semitransforms). Let ψx(t) denote the moment generating function of x,

ψx(t) = E
(
etx) .

If ψx(t) is well behaved in the sense of Duffie et al. (2000) and k times continuously differen-
tiable at the origin, then the kth semimoment of x around c can be recovered via:

E
((

x1{x≤c}
)k
)
=

1
2

∂ kψx(t)
∂ tk

∣∣∣∣
t=0

+
1

4π

ˆ ∞

−∞

eiuc ∂ kψx(t−iu)
∂ tk

∣∣∣
t=0

− e−iuc ∂ kψx(t+iu)
∂ tk

∣∣∣
t=0

iu
du.

Likewise, the lower semivariance of the random variable x can be computed as

E
(
(x−μ)21{x≤μ}

)
= μ2Gx(0,1,μ)−2μ

∂Gx(t,1,μ)
∂ t

∣∣∣∣
t=0

+
∂ 2Gx(t,1,μ)

∂ t2

∣∣∣∣
t=0

,

where Gx(a,b,y) = E(eax1{bx≤y}) is defined in the appendix.

Proof: See appendix C.

Via the use of proposition 1, we can recover semivariances and semimoments from the
moment generating functions ψP(t) and ψQ(t) induced by (4) and (5). As an example, we
consider the calibration results of Eraker (2009) who calibrates a slightly different model than
ours to S&P 500 and VIX data from 1990–2006. Using his calibrated parameters, figure 2.1
shows the influence of the level of risk aversion on a) the premia on second semimoment con-
tracts in equilibrium, and b) on the gap between risk neutral and physical semivariances. We
clearly find that the premium on lower (upper) semimoment contracts is negative (positive),
irrespective of the level of risk aversion. The difference between physical and risk neutral
(semi)variances, on the other hand, is nonpositive for all levels of risk aversion. In equilib-
rium, unfavourable jump risk is inflated under Q (increased tail risk), thus increasing lower
semivariance, whereas an increase in upper semivariance is induced by the lowered return
expectation under Q.

In the next sections, we present an extensive study of the premium characteristics of second
semimoment and semivariance contracts written on major equity indices.
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Figure 2.1: Semimoment risk premia, and differences between SVP and SVQ
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These figures depict the risk premia on second moment positions (left), as well as the differences
between physical and risk neutral (semi)variances (right) for differing levels of risk aversion for
the model laid out in section 2.2. The parameter levels are adapted from Eraker (2009), and
changed slightly, i.e. ψ = 1.5, δ = 0.95, μ = 0.02, μJ = 0.032, φ = 4, σD = 2, σν = 0.0001,
κ = 0.05, l0 = 0.1. These parameters are in line with an average annual consumption growth of
2% and consumption volatility of 3%.

3 Data
Our dataset consists of daily mid quotes and trading volume information of European style
options written on major stock market indices, maturity matched risk free interest rates, in-
dex levels and dividend yields for the period from May 2006 until May 2014, obtained from
Thomson Reuters Datastream. For each index and trading day we filter the near and next month
options3 that exhibit a trading volume above five trades per day and a mid quote above one
index point.4,5 Table 1 gives an overview of the filtered dateset and shows that usual stylized
facts are well present. Monthly stock market index returns are significantly left skewed and
leptokurtic.6 Furthermore, realized monthly volatilities are substantially lower than implied

3We follow the VIX white paper definition of near term and next term. The near term series is the option
series closest to maturity if remaining time to maturity is more than one calendar week. The next term series is
the option series with the maturity that follows the near term series.

4For the Dow Jones and AEX index options, we consider a minimum price of 0.1.
5We do not employ monotony or convexity filters. For each index option set, we further apply the methods of

Bakshi et al. (2003) and compute daily option implied variances for the near and next months which we combine
according to the CBOE VIX white paper and compare to the respective variance indices. This step constitutes an
additional data integrity check which we have not seen in the literature so far. Our filtered dataset is on average
quite able to recover the respective indices’ implied volatility levels.

6The Jarque-Bera test reports p-values < 0.001 for all index returns.
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Table 1: The Data

quotes/day monthly returns

index region from near next IV vol. skew. kurt.

AEX Netherlands May 06 36.8 28.4 25.3 22.5 -1.6 8.4
CAC 40 France May 06 26.6 19.0 25.4 21.1 -0.9 4.1
DAX Germany May 06 53.8 51.2 25.7 23.4 -0.9 4.5
EURO StOXX 50 E.U. May 06 33.0 34.9 27.2 22.5 -0.9 4.2
FTSE 100 U.K. May 06 45.3 35.1 23.1 17.9 -0.9 4.1
SMI Switzerland May 06 26.5 18.1 21.6 17.6 -1.0 5.6
OMX Sweden July 07 22.4 18.1 25.6 20.2 -0.8 4.5
Nikkei 225 Japan July 07 30.9 31.3 30.6 26.2 -1.1 5.6
Dow Jones U.S. May 06 21.4 15.2 21.8 15.7 -1.0 5.2
NASDAQ 100 U.S. May 06 40.0 28.9 25.4 18.9 -0.8 3.9
S&P 500 U.S. May 06 69.1 65.7 24.0 16.5 -1.1 5.6

The third column denotes the first available option maturity. Quotes/day is the daily average
number of near and next term options used. IV is the average volatility index level corresponding
to each market index (VAEX, VCAC, VDAX-NEW, VSTOXX, VFTSE, VSMI, SIXVX, VXJ,
VXD, VXN, VIX). Monthly return descriptives summarize volatility, skewness and kurtosis of
monthly non-overlapping index return levels, disregarding dividend payments.

by the option markets, facilitating negative risk premia for assuming variational risk across the
markets. This finding is well in line with results found in the related literature, i.e. the results
of Bakshi and Kapadia (2003) and Carr and Wu (2009).

For each market and each trading day, we interpolate the respective currency’s consensus
zero curve to obtain one and two month ahead zero rates. To this end, we employ the LIBOR
rates for the Euro, Pound Sterling, Japanese Yen, Swiss Frank and U.S. Dollar, and the STI-
BOR for the Swedish Krona. For each stock market index, we employ the daily dividend yield
as a proxy for the one month ahead dividend yield.

With this combined dataset at hand, we are able to price and evaluate trading strategies
based on higher stock market index return semimoments and explore option implied return
distribution semivariances.

4 Estimation and Results
For each stock market index in our dataset we estimate the expected premium components
from equation (1) for the second lower and upper semimoments. To this end, we follow Carr
and Wu (2009) and combine adjacent option series for estimating daily one month ahead sec-
ond upper and lower return semimoments. This results in a daily sample of the risk neutral
semimoments. Further, we compute daily realisations of the corresponding one month ahead
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Table 2: Risk neutral and physical second upper semimoments

Risk neutral Physical

mean std auto mean std auto

AEX 17.92 19.86 0.956 15.14 32.19 0.866
Dow Jones 11.78 15.28 0.912 10.88 26.46 0.890

EURO STOXX 50 19.76 17.51 0.946 15.50 35.20 0.863
CAC 40 17.92 15.90 0.896 14.62 29.99 0.845

FTSE 100 14.77 15.68 0.947 11.39 23.66 0.812
Nikkei 225 25.87 33.46 0.896 22.27 47.21 0.879

NASDAQ 100 17.23 17.87 0.869 17.34 35.26 0.890
S&P 500 14.53 17.35 0.946 11.92 30.35 0.877

OMX 20.35 20.14 0.896 15.76 35.14 0.847
SMI 11.75 13.95 0.881 9.92 21.95 0.862
DAX 18.30 17.29 0.959 17.20 35.61 0.863

This table reports summary statistics for the risk neutral and realized sec-
ond upper return semimoments in basis points. The columns mean and
std denote the sample average and standard deviation, auto summarizes
the sample autocorrelation.

log returns of the type:

log

(
Si

t+30

Si
t

)2

1{Si
t+30>Si

t}

for the second upper semimoment contract, or

log

(
Si

t+30

Si
t

)2

1{Si
t+30≤Si

t}

for the second lower semimoment contract, where Si
t+30 denotes the level of index i one month

ahead. Table 2 summarizes the risk neutral and realized, i.e. physical, second upper semimo-
ment levels. We find that, on average, the risk neutral values are slightly above their physical
counterparts, with smaller standard deviations and higher autocorrelations. The high level of
physical autocorrelation is induced by the fact that we employ overlapping monthly returns.
Table 3 summarizes the risk neutral and realized second lower semimoment levels. Comparing
the differences to the upper contracts from above we find that the spreads between risk neutral
and physical semimoments are more pronounced here, as are the standard deviations.

From a first look, we find that the P−Q differences are substantially more pronounced
for the lower return semimoments than for the upper semimoments. This is a first hint at
our hypothesis that the there is a difference in premia for upper and lower semimoments. To
investigate this further, we explicitly evaluate the premia for each semimoment position across
markets. Tables 4 and 5 report results for the one month semimoment premia corresponding to
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Table 3: Risk neutral and physical second lower semimoments

Risk neutral Physical

mean std auto mean std auto

AEX 39.40 48.12 0.978 30.23 134.68 0.934
Dow Jones 32.50 61.36 0.664 13.35 60.98 0.853

EURO STOXX 50 43.69 46.50 0.953 23.71 79.03 0.898
CAC 40 39.95 40.75 0.958 22.70 73.74 0.892

FTSE 100 32.98 39.79 0.962 15.76 63.87 0.904
Nikkei 225 53.82 60.70 0.925 33.47 141.34 0.913

NASDAQ 100 37.60 47.66 0.956 20.59 89.26 0.877
S&P 500 34.40 48.07 0.960 17.72 82.19 0.883

OMX 41.20 47.89 0.925 22.21 85.44 0.923
SMI 26.79 37.79 0.900 14.11 50.27 0.882
DAX 38.75 45.48 0.943 24.52 97.11 0.927

This table reports summary statistics for the risk neutral and realized sec-
ond lower return semimoments in basis points. The columns mean and std
denote the sample average and standard deviation, auto summarizes the
sample autocorrelation.

(1) in the left panels. The right panels summarize the monthly returns from a trading strategy
that invest in the respective semimoment contracts. For example, for the upper semimoment
contract, a one month return sample would be

log
(

St+30
St

)2
1{St+30>St} −B0(T )SM−

Q
(2)

B0(T )SM−
Q
(2)

.

For the second upper return semimoments, we find that the premia are roughly of the same
order of magnitude across markets and negative, on average. Yet, the autocorrelation adjusted
t-statistics are all insignificant. Thus, we cannot reject the null hypothesis that there is no
specific premium attached to the upper semimoment of the index assets’ returns. The resulting
returns are on average negative as well. All trading returns are insignificant, except for the
Dow Jones index and the EURO STOXX 50, which feature average returns of differing signs.
As the signs of the premia are largely negative, contradicting economic intuition (see section
2, we will check whether these findings are qualitatively robust when excluding the financial
crisis from our data set in section 5.

Table 5 finally reports the premia attached to the lower return semimoments. We find that
their premia are all negative and mostly highly significant across markets. For example, the
Newey West adjusted t statistics of the NASDAQ is −2.209, corresponding to a two sided
p-value of 2.7%. The absolute values of the lower semimoment premia are about eight times
higher than their corresponding upper semimoment premia, on average. A look at the return
statistics indicates that investments in lower semimoment contracts yield a significantly neg-
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Table 4: Summary statistics of upper semimoment premia and trading re-
turns

Premium Return (%)

mean std t mean std t

AEX -2.78 33.50 -1.050 -5.58 168.64 -0.462
Dow Jones -0.90 26.68 -0.442 35.82 269.52 2.229

EURO STOXX 50 -4.26 34.63 -1.609 -20.76 138.55 -2.052
CAC 40 -3.30 29.92 -1.484 -10.81 190.53 -0.951

FTSE 100 -3.38 24.22 -1.825 -15.22 148.32 -1.429
Nikkei 225 -3.61 53.18 -0.789 7.21 223.00 0.368

NASDAQ 100 0.11 34.99 0.041 18.82 175.88 1.433
S&P 500 -2.61 29.82 -1.165 -6.14 135.84 -0.614

OMX -4.59 35.93 -1.529 -7.60 192.51 -0.558
SMI -1.83 24.28 -0.961 15.79 301.18 0.940
DAX -1.10 34.79 -0.406 2.40 160.45 0.198

This table summarizes the second upper semimoment premia across mar-
kets. The left panel reports the average premium attached to the semimo-
ment in basis points, and Newey and West (1987) adjusted t-statistics. The
right panel reports the corresponding average trading returns and t-statistics.

ative return for half of our sample. The average monthly return across all markets is strongly
negative, and around −28%. Comparing this to an average return of 1% for upside semimo-
ment investments, we find that selling lower semimoment contracts – combining put options
with strikes below the current market level – results in a substantial average return, whereas
long positions in call options yield only minuscule average returns. From the perspective of an
investor, it might be profitable to trade in lower semimoment contracts instead of pure variance
contracts, as the upside potential does not yield a significantly sufficient return contribution.

Given the results above, for most of the major global equity indices we reject the null
hypothesis of unpriced second downside moments. This result, combined with the findings
concerning the upside, indicates that only downside risk, i.e. the risk of negative returns,
is priced in the market. Yet, we have to be careful at this step of our analysis, as we have
deliberately chosen the verifiable reference point zero for splitting moments into upper and
lower components in our estimations.

In order to get a full picture of variance risk pricing, we study semivariance premia instead
of semimoment premia. We thus change the focus of our analysis towards a more funda-
mental measure of economic uncertainty, i.e. realized and risk neutral variance. We subse-
quently examine the difference between the two by splitting each into its respective upper and
lower components. More specifically, we analyze the differences in risk neutral and physical
semivariances across all markets. We compute risk neutral one month ahead semivariances
according to theorem (2) and interpolate the resulting semivariances of the two adjacent op-
tion series to obtain daily one month ahead semivariances. As there exists no straightforward
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Table 5: Summary statistics of lower semimoment premia and trading returns

Premium Return (%)

mean std t mean std t

AEX -9.18 138.32 -0.812 -4.81 317.68 -0.194
Dow Jones -19.15 80.70 -3.282 -44.62 217.80 -3.201

EURO STOXX 50 -19.97 88.30 -3.041 -32.20 205.22 -2.127
CAC 40 -17.25 81.44 -2.812 -25.60 227.47 -1.531

FTSE 100 -17.22 73.23 -3.029 -37.85 205.96 -2.535
Nikkei 225 -20.35 152.05 -1.638 -12.23 304.86 -0.520

NASDAQ 100 -17.01 95.29 -2.209 -35.75 227.52 -2.030
S&P 500 -16.68 89.36 -2.426 -44.42 214.71 -2.823

OMX -18.99 96.50 -2.305 -25.75 241.46 -1.316
SMI -12.68 59.81 -2.971 -25.64 273.40 -1.416
DAX -14.23 105.07 -1.739 -18.53 321.04 -0.742

This table summarizes the second lower semimoment premia across markets.
The left panel reports the average premium attached to the semimoment in
basis points, and Newey and West (1987) adjusted t-statistics. The right panel
reports the corresponding average trading returns and t-statistics.

estimator for the conditional realized semivariances, we will apply the steps from our semimo-
ment analysis, but replace the zero reference point with several moving averages of monthly
index returns.7 Table 6 reports the summary statistics of upper and lower semivariance premia
across all markets. First, we find that the physical semivariances are roughly of the same size,
and comparable across markets, except for the Swiss Market Index, which features relatively
small semivariances in both directions. Comparing the risk neutral semivariances, we find a
pronounced difference between the two, with lower semivariances roughly twice as large as
their upper counterparts. Finally, when we compare the two upper semivariances, we find that
the risk neutral semivariances, although on average below their physical levels, do not com-
mand a statistically significant premium across all markets. The lower semivariances, on the
other hand, are on average 70% above their physical expectations. This difference is highly
statistically significant across all markets, except for the Dutch, Japanese and German indices.
These results strongly suggest that the market charges a premium only for adverse economic
states, when assuming that they occur when index returns are sufficiently negative. Thus, the
premium which risk averse investors levy upon the variance is, in fact, only levied upon the
adverse part of the variance, i.e. lower semivariance. From an economic point of view, the risk

7The monthly semivariance is not composed of a sum of daily (semi) returns, but a convolution of these

Et

(
log

(
St+30

St

)2

1{
log

( St+30
St

)
≤0

}
)

�= Et

(
t+30

∑
τ=t+1

log
(

Sτ

Sτ−1

)2

1{
log

(
Sτ

Sτ−1

)
≤0

}
)
,

i.e. the usual approximation of the variance as the sum of daily variations does not hold for semimoments and
semivariances.
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neutral expectations of negative consumption risks intensify in equilibrium, whereas positive
risks (positive consumption growth) are, if at all, only slightly decreased (compare figure 2.2,
right panel).

Our results further offer implications for macroeconomic asset pricing. Models should
be able to reproduce the fact of differential semivariance premia, with a substantial premium
attached to lower semivariance and only small or no premia for positive semivariances.

Table 6: Summary statistics of upper and lower semivariance premia

Upside Downside

SV
+

Q SV
+

P diff t SV−
Q

SV−
P

diff t

AEX 19.16 25.30 6.13 -1.342 37.91 27.46 -10.45 1.209
Dow Jones 12.36 14.08 1.72 -0.598 31.34 13.71 -17.63 3.351

Euro Stoxx 50 21.12 24.98 3.86 -0.797 41.98 22.67 -19.32 3.251
CAC 40 18.80 22.45 3.65 -1.002 38.56 22.78 -15.78 2.702

FTSE 100 15.38 15.82 0.44 -0.190 32.12 16.49 -15.62 3.114
Nikkei 225 28.91 30.57 1.65 -0.296 50.48 36.29 -14.20 1.274

NASDAQ 100 18.45 21.65 3.20 -0.770 36.24 23.61 -12.63 1.790
S&P 500 15.59 16.08 0.49 -0.149 33.09 17.17 -15.92 2.637

OMX 21.58 22.02 0.44 -0.120 39.77 21.37 -18.40 2.630
SMI 12.67 14.13 1.46 -0.515 25.76 13.66 -12.10 2.966
DAX 19.49 23.64 4.14 -0.872 37.35 27.71 -9.64 1.209

This table reports means of daily risk-neutral and physical lower and upper semi-
variances of one-month ahead returns in basis points. Risk-neutral semivariances are
calculated as described in theorem 1. The physical mean is calculated via a quarterly
moving average. Columns under t report the Newey West adjusted t statistics of the
mean differences.

5 Robustness
As the results and methods presented so far employ only approximations to the physical semi-
variances and the dataset covers the financial crisis, which does not represent normal financial
activity, we present further robustness checks here. First, the financial crisis might distort our
findings regarding the semimoment premia. We thus rerun the estimation and exclude the
period containing the height of the financial crisis from our analysis, i.e. we exclude all obser-
vations between August 2008 and April 2009. Table 7 shows that the findings from tables 4
and 5 remain virtually unchanged, with statistics tilted further away from the null hypothesis,
underpinning our results.

Second, for calculating the semivariance premia in table 6, we use the quarterly moving
average of overlapping one-month returns. To add further robustness to our results, we addi-
tionally compute physical lower and upper semivariances using semiannual and annual moving
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Table 7: Robust upper and lower semimoment premia

Upper premia Lower premia

mean std t mean std t

AEX 0.88 27.03 0.458 -14.02 52.86 -3.404
Dow Jones 0.82 16.59 0.682 -17.77 48.38 -5.347

EURO STOXX 50 -2.16 26.88 -1.156 -19.48 55.81 -4.296
CAC 40 -0.88 25.40 -0.496 -16.19 55.68 -3.656

FTSE 100 -0.70 19.51 -0.493 -15.65 33.58 -6.019
Nikkei 225 -0.14 34.92 -0.045 -22.21 54.22 -5.463

NASDAQ 100 1.75 23.71 0.994 -17.09 37.99 -6.265
S&P 500 -0.74 16.91 -0.624 -16.94 31.99 -6.799

OMX -2.84 25.59 -1.461 -16.20 51.77 -3.493
SMI 0.40 17.70 0.299 -10.70 35.45 -3.896
DAX 0.95 28.34 0.468 -14.53 68.32 -2.486

This table summarizes the second upper and lower semimoment premia
across markets excluding the period Sep/08 — Mar/09, i.e. the height of
the financial crisis (in basis points). The column t reports Newey and West
(1987) adjusted t-statistics.

averages for the conditional mean levels in table 8. Here, we also present the estimates ex-
cluding the financial crisis period. We find that the quality of the results remains unchanged,
and when we exclude the financial crisis from our dataset, the estimates become even more
significant.

6 Conclusion
This paper studies the variance risk premium from a new perspective by disaggregating the to-
tal premium into two components, an upper and a lower semivariance premium. We show that
there exists a substantial difference in premia of upper and lower semivariances across global
equity markets. To obtain semivariance premia we propose a method to derive risk-neutral
upper and lower semivariances from weighted positions in call and put option prices written
on major stock market indices. In most equity markets, we find no statistically significant
market price for upside return variance, while we find very strong evidence that there exists a
significant and highly negative premium for downside return variance. This indicates that the
well documented phenomenon that market participants accept a substantial negative premium
for hedging against uncertainty of changes in future consumption variance is in fact largely
driven by investor’s aversion against negative economic outcomes. Uncertainty about positive
future economic states, on the other hand, is not priced by market participants. This result
adds to the hypothesis found in the literature that the variance premium is probably driven by
the left tail of the index return distribution.
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Table 8: Robust upper and lower semivariance premia

Upside Downside

tquarter tsemi tannual tquarter tsemi tannual

AEX -1.342 -0.982 -0.487 1.209 0.895 0.915
Dow Jones -0.598 -0.427 0.006 3.351 3.071 3.051

EURO STOXX 50 -0.797 -0.460 0.119 3.251 3.100 3.132
CAC 40 -1.002 -0.562 -0.022 2.702 2.735 2.742

FTSE 100 -0.190 0.407 0.979 3.114 2.936 2.860
Nikkei 225 -0.296 -0.145 0.462 1.274 1.119 1.533

NASDAQ 100 -0.770 -0.452 0.316 1.790 1.450 1.637
S&P 500 -0.149 -0.158 0.428 2.637 2.363 2.340

OMX -0.120 -0.036 0.590 2.630 2.397 2.405
SMI -0.515 -0.292 0.371 2.966 2.866 2.835
DAX -0.872 -0.510 0.157 1.209 1.286 1.335

AEX -1.112 -0.891 -1.044 2.353 2.635 2.580
Dow Jones -0.177 0.057 -0.136 4.207 4.059 4.076

EURO STOXX 50 -0.697 -0.246 0.046 3.473 3.515 3.515
CAC 40 -1.126 -0.610 -0.412 2.478 2.930 2.820

FTSE 100 -0.332 0.432 0.311 4.262 4.667 4.370
Nikkei 225 0.338 0.502 0.492 1.835 2.517 3.545

NASDAQ 100 0.069 0.798 0.667 2.811 3.389 3.438
S&P 500 1.113 1.042 0.679 4.788 4.976 4.741

OMX 0.341 1.015 1.262 2.702 3.246 2.773
SMI -1.246 -0.975 -0.462 3.159 3.195 2.866
DAX -0.717 -0.303 0.103 1.035 1.361 1.403

This table summarizes the Newey and West (1987) adjusted t statistics
of the upper and lower semivariance premia across markets for different
choices of the moving average window (upper panel) and also for the dataset
that excludes the period Sep/08 — Mar/09 (lower panel).

From a trading perspective, we show that the economically and statistically significant por-
tion of return variance risk can be attributed to negative return variance risk, or second lower
semimoment risk. To an investor, this means that excess returns derived from variance trades
can be tapped into by investing into a long/short strategy that combines second semimoment
contracts.

There are several important possibilities to extend our research. First, our approach can
be extended to individual stock returns which could provide further insights on differences in
valuation of upper and lower semivariances and semimoments on firm level. Second, along
the lines of Harlow and Rao (1989) and Estrada (2007) – who show that downside risk mea-
sures and the downside beta CAPM model can dominate mean/variance portfolio choice and
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the classical CAPM – further research could analyze the information and pricing content of
implied semivariances. One could research whether, and how, single stock semivariance is
priced in the markets and add to the literature of marketwide downside risk factors. Finally,
robustness could be further analyzed by considering bid/ask spreads.
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A Proof of Theorem 1
Lemma 3. Let f be a continuous function on [a,b]. Suppose that F is continuous on [a,b] and
that F ′ = f on (a,b). Then

F(b)−F(a) =
ˆ b

a
f ′(u)du.

A.1 Replicating lower/upper semimoments
For the derivation of the lower semimoment formula, let 0 < S < S0 and f (x) be a twice
differentiable function on (S,S0). By lemma 3,

f (S) = f (S0)−
S0ˆ

S

f ′(u)du

= f (S0)−
S0ˆ

S

⎡
⎣ f ′(S0)−

S0ˆ

u

f ′′(v)dv

⎤
⎦du

= f (S0)− f ′(S0)(S0 −S)+

S0ˆ

S

S0ˆ

u

f ′′(v)dvdu

= f (S0)+ f ′(S0)(S−S0)+

S0ˆ

S

vˆ

S

f ′′(v)dudv

= f (S0)+ f ′(S0)(S−S0)+

S0ˆ

S

f ′′(v)(v−S)dv

= f (S0)+ f ′(S0)(S−S0)+

S0ˆ

0

f ′′(v)(v−S)+dv,

where y+ = y1{y>0}. For the upper semimoment formula, assume S > S0 > 0 and f (x) a twice
differentiable function on (S,S0). Then, analogous

f (S) = f (S0)+ f ′(S0)(S−S0)+

∞̂

S0

f ′′(v)(S− v)+dv.

A.2 Pricing lower/upper semimoments
Now let ST be the value of the asset at maturity, with risk neutral probability density function
p(ST ). Also, let B0 (T ) be the price of a maturity matched risk free zero bond (for ease of expo-
sition, we assume that interest rates are independent of ST ). Then, for any lower semimoment
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function f (ST ) = g(ST )1{ST≤S0}

EQ [B0 (T ) f (ST )] = B0 (T )
ˆ

R

f (ST )p(ST )dST

= B0 (T )
ˆ

R

g(ST )1{ST≤S0}p(ST )dST

= B0 (T )

S0ˆ

0

g(ST )p(ST )dST

= B0 (T )

S0ˆ

0

g(S0)p(ST )dST +B0 (T )

S0ˆ

0

g′(S0)(ST −S0)p(ST )dST

+B0 (T )

S0ˆ

0

S0ˆ

0

g′′(v)(v−ST )
+dvp(ST )dST

= B0 (T )(g(S0)−g′(S0)S0)EQ
[
1{ST≤S0}

]
+B0 (T )g′(S0)EQ

[
ST 1{S≤S0}

]

+B0 (T )

S0ˆ

0

S0ˆ

0

g′′(v)(v−ST )
+p(ST )dST

= B0 (T )(g(S0)−g′(S0)S0)EQ
[
1{ST≤S0}

]

+B0 (T )g′(S0)EQ
[
ST 1{ST≤S0}

]
+

S0ˆ

0

g′′(v)Put(v)dv.

For the second lower semimoment contract

g(x) = log
(

x
S0

)2

.

Since g(S0) = g′(S0) = 0 we obtain

EQ

[(
log

(
ST

S0

))2

1{ST≤S0}

]
=

S0ˆ

0

g′′(v)
B0 (T )

Put(v)dv =

S0ˆ

0

2
(

1− log
(

v
S0

))
B0 (T )v2 Put(v)dv.

For the upper semimoment contract we obtain analogously

EQ

[(
log

(
ST

S0

))2

1{ST>S0}

]
=

∞̂

S0

2
(

1− log
(

v
S0

))
B0 (T )v2 Call(v)dv.

This completes the proof of theorem 1.
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B Proof of theorem 2

We are now interested in expressing EQ

[(
log

(
ST
S0

)
−μQ

)2
1{ln( ST

S0
)≤μQ}

]
in terms of option

prices, where μQ = EQ
[
log

(
ST
S0

)]
. First note that

EQ

[(
log

(
ST

S0

))2

1{
log

(
ST
S0

)
≤μQ

}
]
= EQ

[
g(ST )1{ST≤S0eμQ}

]

with g(x) =
(

log
(

x
S0eμQ

))2
Therefore using above we obtain

EQ

[(
log

(
ST

S0

)
−μQ

)2

1{
log

(
ST
S0

)
≤μQ

}
]
=

1
B0 (T )

S0eμQˆ

0

2
(

1− log
(

v
S0eμQ

))
v2 Put(v)dv,

since g(S0eμQ) = g′(S0eμQ) = 0. Likewise we obtain

EQ

[(
log

(
ST

S0

)
−μQ

)2

1{
log

(
ST
S0

)
>μQ

}
]
=

1
B0 (T )

∞̂

S0eμQ

2
(

1− log
(

v
S0eμQ

))
v2 Call(v)dv.

We have thus expressed the risk neutral semi-variances using only observable option prices.
However, μQ is still an unknown parameter to be solved for. We apply the approach of Carr
and Madan (2001) and Bakshi et al. (2003) to expressμQ in terms of option prices:

μQ = EQ

[
log

(
ST

S0

)]
=

1
B0 (T )

[
1−B0 (T )−

ˆ S0

0

1
v2 Put(v)dv−

ˆ ∞

S0

1
v2 Call(v)dv

]
. (6)

This completes the proof of theorem 2.
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C Proof of proposition 1
Under the usual technical assumptions, Duffie et al. (2000) show that we can recover the
conditional expectation

Gx(a,b,y) = E
(
eax1{bx≤y}

)
from the moment generating function ψ(u) = E(eux) via the Fourier-Stieltjes transform

Gx(a,b,y) =
ψx(a)

2
+

1
4π

ˆ ∞

−∞

eiuyψx(a− iub)− e−iuyψx(a+ iub)
iu

du.

As we are interested in the lower semimoments of x, i.e. in the moments of the random variable
z = x1{x≤c}, let Mx(t) denote the moment generating function of z:

Mx(t) = E
(
etz)

= E
(

etx1{x≤c}
)

= E
(
etx1{x≤c}

)
+E

(
1{x>c}

)
= Gx(t,1,c)+E

(
1{x>c}

)
.

We obtain a relationship between the conditional expectation of Duffie et al. (2000) and
the moment generating function of a truncated random variable:

E
(

zk
)
= E

((
x1{x≤c}

)k
)

=
∂ kMx(t)

∂ tk

∣∣∣∣
t=0

=
∂ kGx(t,1,c)

∂ tk

∣∣∣∣
t=0

+
∂ kE

(
1{x>c}

)
∂ tk

∣∣∣∣∣
t=0

=
∂ kGx(t,1,c)

∂ tk

∣∣∣∣
t=0

=
1
2

∂ kψx(t)
∂ tk

∣∣∣∣
t=0

+
1

4π

ˆ ∞

−∞

eiuc ∂ kψx(t−iu)
∂ tk

∣∣∣
t=0

− e−iuc ∂ kψx(t+iu)
∂ tk

∣∣∣
t=0

iu
du.

We can thus not only recover implied semimoments from a given moment generating function,
but we are also able to price contracts that pay any (semi) moment. Likewise, if we are
interested in the lower semivariance of x, i.e. in the second moment of the random variable
z̃ = (x−μ)1{x≤μ}, we follow the same route. With slight abuse of notation, let M̃x(t) denote
the moment generating function of z̃:

M̃x(t) = E
(

et(x−μ)1{x≤μ}
)

= e−tμGx(t,1,μ)+E
(
1{x>μ}

)
.
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Then, the semivariance of x around μ can recovered via twice differentiation:

E
(
(x−μ)21{x≤μ}

)
= μ2Gx(0,1,μ)−2μ

∂Gx(t,1,μ)
∂ t

∣∣∣∣
t=0

+
∂ 2Gx(t,1,μ)

∂ t2

∣∣∣∣
t=0

Given a moment generating function, the required parameter μ can be obtained by standard
methods, i.e. evaluation of the first derivative of ψx(t) at t = 0,

μ =
∂ψx(t)

∂ t

∣∣∣∣
t=0

.

This completes the proof of proposition 1.
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