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Abstract: Order picking is a warehouse function dealing with the retrieval of ar-
ticles from their storage location in order to satisfy a given demand specified by 
customer orders. Of all warehouse operations, order picking is considered to in-
clude the most cost-intensive ones. Even though there have been different at-
tempts to automate the picking process, manual order picking systems are still 
prevalent in practice. This article will focus on order batching, one of the main 
planning issues in order picking systems. Order Batching has been proven to be 
pivotal for the efficiency of order picking operations. With respect to the availa-
bility of information about the customer orders, order batching can be distin-
guished into static batching and dynamic batching. Improved order batching re-
duces the total picking time required to collect the requested articles. According 
to experience from practice, this can result in significant savings of labor cost 
and into a reduction of the customer order's delivery lead time.  
The aim of this contribution is to provide comprehensive insights into order 
batching by giving a detailed state-of-the-art overview of the different solution 
approaches which have been suggested in the literature. Corresponding to the 
available publications, the emphasis will be on static order batching.  
In addition to this, the paper will also review the existing literature for variants 
and extensions of static order batching (e.g. due dates, alternative objective 
functions). Furthermore, solution approaches for dynamic order batching prob-
lems (like time window batching) will be presented.  
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1. Introduction    

Order picking is a warehouse function dealing with the retrieval of articles from their sto-
rage locations in order to satisfy a given demand specified by customer requests (Peter-
sen & Schmenner, 1999). Order picking arises because incoming articles are received and 
stored in (large-volume) unit loads while (internal or external) customers order small vo-
lumes (less-than-unit loads) of different articles. It is a function critical to each supply 
chain, since underperformance results in an unsatisfactory customer service (long 
processing and delivery times, incorrect shipments) and high costs (labour cost, cost of 
additional and/or emergency shipments). 
Of all warehouse operations, order picking is considered to include the most cost-intensive 
ones. According to Frazelle (2002) up to 50% of the total warehouse operating costs can 
be attributed to order picking. Drury (1988, also see Tompkins et al., 2003) and Coyle et 
al. (1996) even estimate these costs up to 60% and 65%, respectively. The large propor-
tion of order picking (operations) costs originates from the fact that order picking systems 
still involve the employment of human operators on a large scale, despite that there have 
been various attempts to automate the picking process. 
Among such manual order picking systems, picker-to-parts systems can be considered as 
the most important ones, where order pickers move through the warehouse and collect the 
requested articles (Wäscher, 2004). For an efficient organization of the corresponding 
picking operations, order batching, i.e. the grouping of customer orders into picking orders, 
has been proven to be pivotal (de Koster et al., 1999a). 
The aim of this contribution is to provide a comprehensive state-of-the-art review of solu-
tion approaches for order batching in picker-to-part systems. The focus of the paper will be 
on static order batching, which is based on the assumption that all customer orders are 
known in advance. Furthermore, this paper will also review the existing literature for va-
riants and extensions of static order batching (e.g. wave picking, batching and sequencing 
problems). Finally, solution approaches for dynamic order batching problems (e.g. time 
window batching) will be presented. 
The remainder of this paper is organized as follows: In the next section we give a brief in-
troduction into order picking systems, the corresponding planning issues and objectives. 
Section 3 describes the (static) order batching problem. Furthermore, a mathematical 
model for this problem and an exact solution approach are presented. Since the exact so-
lution approach is limited to problems of small size, the application of heuristic solution 
approaches is necessary. The sections 4 and 5 are dedicated to these heuristic approach-
es, Section 4 to constructive solution approaches and Section 5 to the application of meta-
heuristics to the order batching problem. The performance of these algorithms is dis-
cussed in Section 6. In addition to the static order batching several variants of the problem 
will be presented. In Section 7 wave picking will be discussed, whereas Section 8 reviews 
solution approaches for batching and sequencing problems. Dynamic order batching is 
described in Section 9. The paper concludes with a summary. 
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2. Fundamentals

2.1 A Classification of Order Picking Systems 

Two kinds of order picking systems can be distinguished in practice (cf. Fig. 1.), namely 
manual order picking systems which employ human operators, and technical systems, in 
which the process of retrieving articles from the warehouse is completely automated. The 
first group of systems can be further differentiated into picker-to-parts systems and parts-
to-picker systems. 
 

 
Fig. 1. Classification of order picking systems (based on de Koster et al., 2007) 

 
In picker-to-parts systems the order picker walks or rides (e.g. on an Automated Guided 
Vehicle) through the picking area, stops at the storage locations of the respective articles, 
and removes the required number of article units / items. In low-level picker-to-parts sys-
tems the items can be removed from pallets or bins placed on the warehouse floor, or from 
low-level racks which are directly accessible by the order picker from the warehouse floor. 
In high-level (or man-aboard) systems the picking area consists of high storage racks, and 
a crane or a vehicle with a hoisting platform moves the order picker to the storage loca-
tions from which items have to be picked.  
In parts-to-picker systems automated storage and retrieval systems (AS/RS) retrieve unit 
loads (pallets or bins) from the warehouse and deliver them at a transfer site (depot) 
where one or several stationary order pickers are located. The order pickers remove the 
requested items, and the AS/RS returns the unit load to its location in the warehouse.  
According to de Koster et al. (2007), more than 80% of all order picking systems in West-
ern Europe are low-level picker-to-parts systems. Therefore, in this paper we will concen-
trate on this type of order picking system. 

2.2 Standard Layouts of Manual Order Picking Systems 

In a standard layout of a (low-level) picker-to-parts system, the storage locations (bays) 
are of identical size. The bays are arranged on both sides of straight picking aisles of 
equal length and width, which run in parallel to each other and perpendicular to the front of 
the picking area. The depot or input/output (I/O) point is the place where the order pickers 
enter the picking area and where they return to in order to deposit the picked items. Order 
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pickers are enabled to change from one picking aisle to another by means of two cross 
aisles, one at the front and one at the rear of the picking area. The conditions described 
here constitute a so-called single block layout which is depicted in Fig. 2. Depending on 
the types of articles, their sizes, weights, demands etc. the introduction of additional cross 
aisles might increase the efficiency of the system, resulting in a multi-block layout. Such 
layouts and other, non-standard layout types of layouts will not be discussed here any fur-
ther; instead, we refer to the literature (Pohl et al., 2009). 
 

 
 

Fig. 2. Single block layout 
 

2.3 Picking Devices and Pick Lists 

When covering the distances within the picking area on foot, order pickers typically utilize 
devices like roll pallets or carts, which they pull or push along with them through the ware-
house and on which they deposit the picked items until they finally return to the depot. 
Likewise, when travelling on a vehicle, there will be space available on the vehicle for in-
termediate storage where the picked items can be placed. Consequently, the required 
items are collected on tours through the warehouse, where the number of stops on each 
tour is limited by the available space of the picking device on the one hand and by the ca-
pacity requirements of the items to be picked on the other. 
On their tours through the warehouse, order pickers are guided by pick lists. A pick list 
comprises a set of order lines, each one identifying a particular article, the quantity of this 
article requested by a customer and the respective storage location. The order lines are 
already sorted into the sequence according to which the order picker is meant to collect 
the items.  

2.4 Operative Planning Issues in Manual Order Picking Systems 

Given a picking area with a fixed layout, the following essential planning issues can be 
identified (de Koster et al., 2007): 
 

� storage assignment, i.e. the assignment of articles to storage locations; 
� zoning, i.e. the establishment of (work) zones, to which order pickers are restricted 

in their picking operations; 
� order consolidation, i.e. the transformation of customer orders into picking orders; 
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� picker routing, i.e. the determination of sequences according to which the items 
have to be picked and the identification of the corresponding paths in the ware-
house. 

Storage assignment and zoning represent medium-term planning issues and rather are 
part of the tactical planning level, while order consolidation and picker routing refer to the 
operative level in the first place. 
Order consolidation can be organized in two different ways. As for discrete order picking 
(pick-by-order), each tour comprises the items of a single customer order only while for 
batch picking (pick-by-batch) items of several customer orders can be collected simulta-
neously on a single tour. In the latter case, the process of grouping a set of customer or-
ders into picking orders is referred to as order batching.  
With respect to the availability of information concerning customer orders, order batching 
can be distinguished into static (off-line) batching and dynamic (on-line) batching (Yu & de 
Koster, 2009). In the static case it is assumed that the set of customer orders is self-
contained and complete information about its composition (i.e. for each customer order the 
corresponding order lines are known) is available when the batching decision is taken. In 
the dynamic case customer orders arrive at different points in time while the picking 
process is already being executed. 
Picker routing deals with the determination of the sequence in which the items of a given 
picking order are to be picked and the identification of the corresponding (shortest) tour for 
the order picker which connects the respective article locations among each other and with 
the depot. Ratliff & Rosenthal (1983) have presented an exact (polynomial-time) algorithm 
for this problem, which is hardly ever used in practice, though. Order pickers do not seem 
to be willing to follow the routes provided by the algorithm, because of their not always 
straightforward and sometimes even confusing routing schemes (de Koster et al., 1999a). 
Instead, so-called routing strategies are applied, which may be looked upon as heuristic 
solution methods, not necessarily giving tours of minimal length but of plausible patterns, 
easy to memorize and easy to follow. In this way, the risk of missing an item to be picked 
is reduced, which may be an aspect more important than a small reduction of the tour 
length. 
In Fig. 3, several customary routing strategies (Return, S-Shape, Largest Gap and Com-
bined routing) are depicted. The black rectangles symbolize the storage locations from 
which items have to be picked (pick locations). When proceeding according to the Return 
strategy, the order picker enters each aisle in which an item has to be picked from the front 
cross aisle, walks up to the most distant pick location in this aisle and then returns to the 
front cross aisle. As for S-Shape routing, the order picker successively traverses each 
aisle entirely if it contains at least one pick location. Correspondingly, the first aisle is en-
tered from the front cross aisle, the second one from the rear cross aisles, etc. With Larg-
est Gap routing the aisles are entered from front and back aisle in such a way that the 
non-traversed distance between two adjacent pick locations is maximal. Only the leftmost 
and the rightmost aisle which contain items to be picked are traversed entirely. The Com-
bined strategy integrates elements of the S-Shape and Return strategy. Aisles may be tra-
versed entirely or may be entered and left from the same cross aisle. The respective solu-
tions are usually provided by application of dynamic programming.  
We note that – from a planning-theoretical point of view – it would be desirable to solve the 
order consolidation problem and the picker routing problem simultaneously. Such an ap-
proach, however, does not appear to be very realistic for practical purposes, due to the 
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complexity and the size of the problem which would have to be solved (Wäscher, 2004). In 
practice, decisions are made sequentially (de Koster et al., 2007). Here, we will assume 
that a decision has already been made in favour of a particular routing strategy, which will 
serve as input for a subsequent order batching decision. 

 

 
 

Fig. 3. Routing strategies in a single block layout (Hall, 1993; Petersen & Schmenner, 
1999; Roodbergen & de Koster, 2001) 

2.5 Planning Objectives of Operative Planning 

Involving a large proportion of time-consuming manual operations, order picking is consi-
dered to be the most labour-cost-intensive function in a warehouse (Drury, 1988). Accord-
ing to experience from practice, a reduction of picking times results in significant savings of 
labour cost, since it does not only allow for reducing the necessary regular working hours 
of the pickers, but also for reducing expensive overtime or even for downsizing the (picker) 
workforce. Furthermore, since the picking time is an integral part of the delivery lead time, 
a reduction of the picking times may also immediately result in an improvement of the cus-
tomer service provided by the warehouse (Henn et al., 2010). Consequently, the minimiza-
tion of picking times is of vital importance for controlling the picking processes in a ware-
house efficiently. 
Given a particular picking order, the time the order picker takes for the completion of a tour 
on which the respective items are collected, will be called (picking) order processing time. 
Essentially, it consists of the following components: 
 



Sebastian Henn · Sören Koch · Gerhard Wäscher  6 

� travel time, i.e. the time the order picker spends travelling from the depot to the first 
pick location, between the pick locations and from the last pick location to the depot; 

� search time, i.e. the time required for the identification of articles; 
� pick time, i.e. the time needed for moving the items from the corresponding article 

location onto the picking device;  
� setup time, i.e. the time consumed by administrative and set-up tasks at the begin-

ning and end of each tour (Chew & Tang, 1999), including the receipt of the pick list 
and of an empty picking device at the beginning of a tour and the return of the pick-
ing device at the depot (van Nieuwenhuyse & de Koster, 2009). 

 

 
Fig. 4. Typical composition of the order processing time (Tompkins et al., 2003) 

 
Fig. 4 depicts how the order processing time is typically composed of these time elements 
in practice. Among these components, the travel time consumes the major proportion. The 
other components can either be looked upon as constants (search times and pick times) or 
as neglectable (setup times). In other words, the travel time makes up for the major in-
fluencing factor of the order processing time. Furthermore, assuming that the order pickers 
travel at a constant speed, minimization of the total travel time is equivalent to (and can be 
achieved by) the minimization of the total length of all picker tours necessary to collect all 
items of a given set of customer orders (Jarvis & McDowell, 1991). 

3. Order Batching 

3.1 Problem Definition and Analysis 

As has been mentioned before, the required items are collected on tours through the 
warehouse, where the number of stops on each tour is limited by the available capacity of 
the picking vehicle / picking device on the one hand and by the capacity requirements of 
the items to be picked on the other. Customer orders can be combined (batched) into to 
picking orders (batches) until the capacity of the device is exhausted. For the definition of 
the capacity of the picking device various criteria are used in the literature, e.g. the capaci-
ty can be expressed in number of customer orders (Le-Duc & de Koster, 2007), or in num-
ber of items (Bozer & Kile, 2008; Henn et al., 2010). Splitting of customer orders, i.e. the 
inclusion of items from the same customer order in several picking orders, is usually prohi-
bited since it would result in an additional, not-acceptable sorting effort.  
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Based on these conclusions, the (static) order batching problem can be defined as follows: 
How, given routing strategy and capacity of the picking device, can a given set of customer 
orders with known storage locations be grouped (batched) into picking orders such that the 
total length of all picker tours is minimized? (Wäscher, 2004). 
For a simple example, namely the case of two customer orders and S-Shape routing, Fig. 
5 demonstrates that benefits may arise, indeed, from collecting the items requested by two 
customer orders on a single tour instead of collecting them on two separate tours. Figs. 5a 
and 5b depict the two tours based on separate picking, while Fig. 5c illustrates the single 
tour resulting from the batching of both customer orders. The length of the resulting tour is 
obviously shorter than the total length of the two separate tours. As can easily be con-
cluded further, the benefits will be particularly large whenever the items of the batched 
customer orders have nearby locations. 
 

 
 

Fig. 5. Benefits arising from the combination of two customer orders 
 

The order batching problem as described above is known to be NP-hard (in the strong 
sense) if the number of orders per batch is larger than two. This result can be proven by 
showing that the partition-into-triangles problem (Garey & Johnson, 1979) is polynomial 
reducible to the order batching problem (Gademann & van de Velde, 2005).  
The order batching problem features some similarities with the capacitated vehicle routing 
problem, however differs from that with respect to the (customer) order integrity condition, 
i.e. all items of a customer order must be picked on the same tour. Thus, traditional solu-
tion approaches to the capacitated vehicle routing problem cannot be applied directly to 
the order batching problem (Bozer & Kile, 2008). 
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3.2 Model Formulation 

A straightforward optimization model of the order batching problem has been introduced 
by Gademann & van de Velde (2005). In this model, all feasible batches (i.e. all batches 
which do not exceed the capacity of the picking device) are considered explicitly. For the 
presentation of the model, the following parameters are introduced:  
 J set of customer orders, where J = {1,...,n};
 C capacity of the picking device; 
 cj capacity utilization required by customer order j (j �J); 
 I set of all feasible batches; 
di length of a picking tour in which all orders of batch i (i �I) are collected. 

Let ai = (ai1,…,ain) be a vector of binary entries aij, stating whether customer order j (j �J) is 
included in batch i (aij = 1) or not (aij = 0). Then the set of feasible batches is characterized 
by the fact that the capacity constraint is not violated, therefore  

 j ij
j

c a C, i
�

� � ��
J

I  (1) 

holds. Furthermore, the following decision variables are used: 

 xi binary decision variable, xi = 1, if batch i (i �I) is chosen, or xi = 0, otherwise. 
The optimization model can then be formulated as follows: 

 i i
I

min  d x
�
�
i

 (2) 

subject to 
 ij i

i
a x 1, j ;

�

� � ��
I

J  (3) 

 ix {0,1}, i� � � I.  (4) 

The sets of constraints (3) and (4) ensure that a set of batches is chosen in such a way 
that each customer order is included in exactly one of these batches.  
Another optimization model for order batching in a single block layout has been introduced 
by Bozer & Kile (2008). However, the model is only applicable for the special case of S-
Shape routing in narrow aisles where reversing is not permitted. With respect to these 
special conditions we do not discuss any further details here. 

3.3 Solution Approaches

It is important to note that the number of possible batches and, consequently, the number 
of binary decision variables in the optimization system (1)-(4) grows exponentially with the 
number of customer orders. Henn et al. (2010), e.g., report on problem instances consist-
ing of 40 customer orders in which the number of feasible batches is larger than 350,000 
for a warehouse with 900 storage locations. Thus, a solution approach which involves the 
application of commercial LP/IP solvers to an explicitly formulated optimization system (1)-
(4) covers only a limited range of problem instances. Henn et al. (2010) were only able to 
solve problem instances with at most 50 customer orders to optimality. For a large number 
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of instances, the LP/IP solver was only able to generate feasible solutions but was unable 
to prove their optimality, since memory restrictions of the used PC were violated.   
Based on the model formulation (1)-(4), Gademann & van de Velde (2005) present a col-
umn generation approach which starts from an initial set of batches and consecutively 
adds new batches as long as they improve the solution. The initial set of batches is deter-
mined by an iterated descent algorithm. Then – limited to these batches – the linear relax-
ation of the optimization system (1)-(4) is solved. In each iteration, a pricing algorithm ge-
nerates one or several batches whose reduced costs are minimal. These batches are 
added to the (relaxed) model and the model is solved again. These steps are repeated 
until no further batch can be identified which would improve the current solution. If the ob-
tained solution is not integral, a branch-and-price algorithm is used in order to generate an 
optimal integral solution for the order batching problem. 
Gademann & van de Velde (2005) carried out an extensive numerical study on their exact 
solution approach. In their experiments they focus on a warehouse with 400 storage loca-
tions. They investigate several problem classes with up to 30 customer orders and 10 cus-
tomer orders as a maximal capacity of the picking device. The algorithm is able to provide 
optimal solutions for almost all considered instances within a few minutes. The computing 
times increase significantly with an increasing number of customer orders; therefore the 
algorithm is not applicable for larger problem instances.  
Due to the fact that the existing exact solution approaches to the order batching problem 
have only a limited applicability, real-world problems will have to be solved by means of 
heuristic approaches. These heuristic approaches can be classified into two groups, 
namely constructive solution approaches and metaheuristics.  

4. Constructive Solution Approaches 

Constructive solution approaches can be distinguished into priority rule-based algorithms, 
seed algorithms, savings algorithms and data mining approaches.  

4.1 Priority Rule-Based Algorithms 

Priority rule-based algorithms consist of a two-step procedure: In the first step, priorities 
are assigned to the customer orders. In the second step, in accordance with the previously 
assigned priorities, these customer orders are assigned successively to batches ensuring 
that the capacity constraint is not violated. A pseudocode for this type of algorithm is pre-
sented in Fig. 6. 
Several rules have been suggested in the literature for the determination of priorities. The 
probably most straightforward one consists of assigning the priorities to the customer or-
ders as they come in, i.e. according to the First-Come-First-Served (FCFS) rule. We note 
that this will practically result in a random sequence of the customer orders. Thus one 
cannot really expect that good-quality solutions will be provided by a procedure of this 
kind. However, the results from the application of the FCFS heuristic are commonly used 
as benchmarks in numerical experiments with other solution algorithms. 
Gibson & Sharp (1992) introduced the application of two-dimensional and four-dimensional 
space-filling curves, Pan & Liu (1995) suggested the application of six-dimensional space-
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filling curves for the determination of priorities. The coordinates of the storage locations of 
the demanded items in a customer order are mapped onto a theta-value on the unit circle. 
This value defines the priority of the customer order. The order with the largest value rece-
ives the highest priority. Ruben & Jacobs (1999) propose that the customer orders are 
sorted according to a so-called order envelope. The envelop of a customer order is defined 
as the pair of aisle numbers where the first number corresponds to the leftmost and the 
second number corresponds to the rightmost aisle from which an item has to be picked. 
Customer orders may be assigned to batches either sequentially according to the Next-Fit 
Rule, or simultaneously according to the First-Fit or the Best-Fit Rule. As for the Next-Fit 
Rule, customer orders are added to a batch until the capacity limit of the picking device is 
reached; in this case a new batch is opened. According to the First-Fit Rule batches are 
numbered in the order in which they were started (opened); the next customer order is al-
located to a batch which possesses the smallest number and still provides sufficient ca-
pacity for the accommodation of the customer order (Ruben & Jacobs 1999). The Best-Fit 
Rule assigns an order to the batch with the least remaining capacity (Wäscher, 2004).  
 
assign a priority to each customer order; 
sort all orders according to non-ascending priorities; 
open the first batch and assign the first order to it; 
while there exist unassigned orders do

select next order; 
if order can be assigned to an open batch then

  select open batch; 
  assign order to this batch; 
 else 
  open new batch; 
  assign order to this batch; 
 endif 
endwhile

 
Fig. 6. General principle of priority rule-based algorithms 

4.2 Seed Algorithms 

Seed algorithms, introduced by Elsayed (1981), generate batches sequentially by means 
of a two-phase procedure: a seed selection phase and an order congruency phase. During 
the seed selection phase, an initial order ("seed") is chosen for a batch which has just 
been opened. A large variety of rules is available for the selection of the seed (for some 
examples see Table 1). Furthermore, the seed can be determined in a single mode (where 
only the first order in the batch defines the seed) or in cumulative mode (where all orders 
included in the batch define the seed). Afterwards, in the order congruency phase, unas-
signed customer orders are added to the seed according to an order-congruency rule (for 
some examples see Table 2), which measures the "distance" from a customer order not 
yet allocated to the seed of the batch. A pseudocode for seed algorithms is depicted in Fig. 
7. 



Order Batching in Order Picking Warehouses: A Survey of Solution Approaches 11

 
 
Name of the Rule From the set of unassigned customer orders select 

one order... 
Random Seed  
(Gibson & Sharp, 1992) 

... randomly. 

Smallest (Largest) Number of 
Items  
(Elsayed & Stern, 1983) 

... which consists of the smallest (largest) number of 
items.  

Smallest (Largest) Number of 
Picking Locations  
(Elsayed & Stern, 1983; El-
sayed, 1981) 

... which possesses the smallest (largest) number of 
locations the order picker will have to visit in order to 
collect the items of this order. 

Smallest (Largest) Number of 
Picking Aisles  
(Ho & Tseng, 2006;  
de Koster et al., 1999b) 

... which possesses the smallest (largest) number of 
aisles the order picker will have to enter in order to 
collect the items of this order. 

Smallest (Greatest) Location-
Aisle Ratio  
(Ho & Tseng, 2006) 

... with the smallest (largest) ratio of the number of sto-
rage locations to be visited over the number of aisles 
to be entered.  

Smallest (Greatest) Aisle-
Simple-Weight Sum  
(Ho et al., 2008) 

...  for which the sum of the weights of the aisles to be 
entered is minimal (maximal). The weight of an aisle is 
equal to its index, i.e. the weight of an aisle increases 
with its distance from the depot. 

Smallest Aisle-Exponential-
Weight Sum  
(Ho & Tseng, 2006) 

... for which the sum of the weights of the aisles to be 
entered is minimal. The weight of an aisle depends 
exponentially on the index of the aisle.  

Smallest (Greatest) Rectan-
gular-Covering Area  
(Ho et al., 2008) 

... for which the smallest rectangle is minimal (maxim-
al) by which the storage locations of all required items 
of this order can be covered. 

Shortest Average Rectangular 
(Euclidean) Distance to the 
Depot  
(Ho et al.,  2008) 

... for which the average rectilinear (Euclidean) dis-
tance between the depot and the storage locations to 
be visited is minimal. 

Shortest Average Aisle Dis-
tance to the Depot  
(Ho et al., 2008) 

... for which the average distance along the cross aisle 
between the depot and the storage locations to be vi-
sited is minimal. 

Farthest Storage Location  
(de Koster et al., 1999b) 

... which requires the collection of an item located far-
thest from the depot. 

Longest Travel Time  
(de Koster et al., 1999b) 

... which requires the longest travel time. 

Largest Aisle Range  
(de Koster et al., 1999b) 

... with the largest aisle range, i.e. the absolute differ-
ence between the number of the leftmost aisle and the 
number of the rightmost aisle to be entered. 

 
Table 1. Examples of seed selection rules 
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Name of the Rule Add an order… 
Smallest Number of Addition-
al Picking Locations (Aisles ) 
(Rosenwein, 1996; Ho & 
Tseng, 2006) 

… such that the number of additional picking locations 
(aisles) to be visited is minimal. 

Smallest (Greatest) Overlap-
ping Covering Area  
(Ho et al., 2008) 

... such that the overlapping area between the smallest 
rectangle covering the storage locations of the items in 
this order (order covering rectangle) and the smallest 
rectangle covering the locations of the items already in 
the batch (batch covering rectangle) is minimal (max-
imal). 

Smallest (Greatest) Additional 
Covering Area  
(Ho et al., 2008) 

... such that the difference in size between the original 
batch covering rectangle and the new batch covering 
rectangle (i.e. the one also including the additional or-
der) is minimal (maximal). 
 

Shortest Average Mutual-
Nearest-Rectangular (Eucli-
dean) Distance  
(Ho et al., 2008) 

... which minimizes the minimal average mutual-
nearest-rectangular (Euclidean) distance. This dis-
tance is determined as follows: At first, the sum of the 
rectangular (Euclidean) distances from each pick loca-
tion of the order to the respective closest pick locations 
of the batch is divided by the number of items in the 
order. Secondly, the sum of the rectangular (Eucli-
dean) distances from each pick location of the batch to 
the respective closest pick location of the order is di-
vided by the number of items in the batch. The mean 
of these two values gives the average mutual-nearest-
rectangular (Euclidean) distance. 

Shortest Average Mutual-
nearest-Aisle Distance  
(Ho et al., 2008) 

... which minimizes the average mutual-nearest-aisle 
distance. This distance can be determined similar to 
the average mutual-nearest-rectangular distance, whe-
reas the distance between two pick locations is defined 
according to the distance on the cross aisle between 
the two pick locations.  
 

Smallest Sum I /II 
(Gibson & Sharp, 1992; Pan 
& Liu, 1995) 

… for which the sum of the distances between the sto-
rage locations of the batch (order) and the closest item 
of the order (batch) is minimal. 

Smallest Center of Gravity  
(Rosenwein, 1996) 

… for which the absolute difference between the cen-
tre of gravity of the order and the centre of gravity of 
the batch is minimal. The centre of gravity is defined 
as the average number of aisles which have to be en-
tered by the order picker.  

Time Saving  
(de Koster et al., 1999b) 

… for which the travel time reduction is maximal when 
being added to the batch, i.e. when batch and order 
are picked on one tour instead of two separate tours.  

Greatest Number of Identical 
Picking Locations (Aisles)  

… with has the largest number of identical pick loca-
tions (aisles) in common with the batch. 
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(Elsayed & Stern, 1983;  
Ho & Tseng, 2006) 
Greatest Picking Location 
(Aisles) Similarity Ratio  
(Ho & Tseng, 2006) 

… which maximize the ratio of the number of picking 
locations (aisles) batch and order have in common 
over the number of picking locations (aisles) of batch 
plus order. 

Greatest Picking Location 
(Aisles) Covering Ratio  
(Ho & Tseng, 2006) 

… which maximizes the ratio of the number of picking 
locations (aisles) batch and order have in common 
over the number of picking locations (aisles) of the or-
der. 

 
Table 2. Examples of order-congruency rules 

 
 
while there exist unassigned customer orders do
 open a new batch; 

select an unassigned order as seed order; 
while orders exist which does not exceed the

  remaining capacity of the current batch then
  select an unassigned order; 
  assign order to open batch; 
 endwhile 
 close current batch; 
endwhile

 
Fig. 7. General principle of seed algorithms 

4.3 Savings Algorithms 

Savings algorithms are based on the Clarke-and-Wright Algorithm for the vehicle routing 
problem (Clarke & Wright, 1964) which has been adapted in several ways for the order 
batching problem. In the initial version (C&W(i)) of the algorithm for the order batching 
problem, for each combination of customer orders savings are computed which can be 
obtained in terms of tour length reduction by assigning the items of the customer orders to 
one (large) batch instead of collecting them separately. Starting with the pair of orders that 
provides the highest savings, the pairs are considered one after another in a non-
ascending order and checked with respect to the following three situations: (1) None of the 
two orders has been assigned to a batch yet; in this case a new batch will be opened and 
the orders will be assigned to it. (2) One of the orders has already been assigned to a 
batch; the other one will then added to the batch if the remaining capacity is sufficient; oth-
erwise the next pair of orders will be considered. (3) Both orders have already been as-
signed; then the next pair of orders is considered. All orders which are left unallocated at 
the end of the process will be assigned to an individual batch each (Elsayed & Unal, 
1989).   
In the second variant of the algorithm, denoted by C&W(ii), savings are recalculated each 
time a new assignment of customer orders to batches has been made. The (elementary) 
orders which have already been combined into a batch are excluded from these calcula-
tions, in which, on the other hand, the new batch is treated as a new "large" order (Elsayed 
& Unal, 1989). A pseudocode of this algorithm is presented in Fig. 8. Referring to C&W(ii), 
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Bozer & Kile (2008) suggest a normalized savings algorithm in which normalized instead 
of absolute savings are used, i.e. the travel time which can be saved by picking two orders 
on the same tour is divided by the time necessary if both orders are picked on separated 
tours. 
A drawback of C&W(i) can be seen in the fact that the algorithm may generate solutions 
with a large number of batches. In order to control the number of batches, C&W(i) can be 
modified in the following way: The initial savings matrix is modified each time customer 
orders have been assigned, i.e. for those pairs of customer orders of which both orders 
have not yet been assigned to a batch, the savings are reduced by a constant value. 
Therefore, the algorithm tends to select pairs of customer orders where at least one order 
is already assigned to a batch (C&W(iii); Elsayed & Unal, 1989). 
The EQUAL (Elsayed & Unal, 1989) algorithm generates batches sequentially and uses 
the seed algorithm principle. The pair of customer orders with the highest saving is allo-
cated to a batch and considered as an initial seed. Then a single order is assigned to the 
batch which does not violate the capacity constraint and results in the highest savings in 
combination with the seed. The seed and the assigned order form the new seed. If none of 
the remaining unassigned orders fits into the batch, then a new batch is opened. 
 
repeat
 calculate savings savii’ for all pairs (i,i’) of orders
  i and i’;   

repeat
  choose the pair with highest savings; 
  if combination of both orders does not violate the capacity
   of the picking device then
     combine both orders to a new larger order; 
     remove both orders from the list; 
     include the new larger order in the list;  

else
     set savings to zero;     

endif
until two orders are combined or all pairs have been

considered;
until no pair was combined in the last iteration; 
each of the remaining orders serves as a single batch; 

 
Fig. 8. Savings algorithm C&W(ii) 

 
In the Small-and-Large Algorithm (Elsayed & Unal, 1989) two subsets are defined, namely 
a set of large customer orders whose number of requested items exceeds a predefined 
number and a set of small ones made up by the remaining ones. The set of large orders is 
assigned to batches by application of the EQUAL algorithm. The small customer orders 
are sorted in a decreasing order of their size; then – in the sequence given by this sorting 
– each order is allocated to a batch where it does not violate the capacity constraint and 
generates the highest savings. If during the procedure a “small” order cannot be added to 
any of the existing batches, this order is assigned to a new batch. This batch is included in 
the set of batches and considered in the following iterations. 
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4.4. Data Mining Approach 

Finally, Chen & Wu (2005) describe an order batching approach based on data mining and 
integer programming. In this approach, at first similarities of customer orders are deter-
mined by means of an association rule. For each pair of orders a support value (or order 
correlation measure) is obtained. In a 0-1 integer programming approach orders are clus-
tered into batches such that the sum of all support values to the batch medians, an order 
which serves as basis for each batch, is maximized.  

5. Metaheuristics 

5.1. Local Search 

The general principle of local search-based heuristics consists of exploring the neighbour-
hood of a solution in order to identify a new solution with a smaller objective function value. 
For a solution S a solution is called neighbour solution if it can be obtained by applying a 
single local transformation (”move”) to S. Classic local search generates a sequence of 
solutions S0, S1, S2, . . . , where each member of the sequence is a neighbour of its prede-
cessor. Each element possesses a smaller objective function value than the previous one. 
Classic local search stops at a local minimum, i.e. when no neighbour solution can be 
found that has a smaller objective function value than the incumbent solution. Classic local 
search suffers from the fact that it gets stuck in a local minimum which is probably far from 
the global minimum. Therefore, the local search principle has been modified in several 
ways in order to overcome such local minima.  
The first local search-based approach for the Order Batching Problem was suggested by 
Gademann & van de Velde (2005). Their method starts from an initial solution generated 
by means of the FCFS rule. Neighbour solutions are obtained by so-called SWAP moves, 
in which two orders from different batches are interchanged. Since Gademann & van de 
Velde (2005) consider a problem in which the capacity of the picking device is defined with 
respect to the number of customer orders, the algorithm operates only on feasible neigh-
bour solutions. The authors have implemented a first-improvement strategy, i.e. the first 
solution from the neighbourhood which has been identified to possess a better (smaller) 
objective function value is accepted and taken as the new incumbent solution. When a 
local minimum has been reached, the solution is perturbed by a sequence of three opera-
tions. In each operation three customer orders from three different batches are inter-
changed at random. The solution obtained from these perturbations is taken as a new in-
cumbent solution from which the improvement phase is started again. This series of opera-
tions is repeated for a predefined number of iterations. 
Henn et al. (2010) propose the application of Iterated Local Search (ILS) to the order 
batching problem. ILS tries to intensify the search for improved solutions in the vicinity of 
local minima. It consists of two phases, a perturbation and a local search phase. In the 
perturbation phase, the incumbent solution is partially modified (perturbed). In the local 
search phase, proceeding from this solution, one tries to identify an improved solution. The 
solution stemming from the local search phase has to pass an acceptance criterion in or-
der to become the new incumbent solution; otherwise the previous solution remains the 
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incumbent solution to which another perturbation is applied. The two phases are repeated 
in turn until a termination condition is met.  
With respect to the order batching problem, Henn et al. (2010) suggest the following: An 
initial solution is generated by means of the FCFS rule. The local search phase includes 
SWAP moves (as defined above) and SHIFT moves (in which one customer order is se-
lected and assigned to a different batch). One starts with a series of SWAP moves, until no 
further improvement can be obtained by this type of moves. Then one switches to a series 
of SHIFT moves, again until no further improvement can be achieved.  Then one goes 
back to a series of SWAP moves etc. This sequence of alternating stages of SWAP and 
SHIFT moves is repeated until no further improvement can be obtained. In the perturbation 
phase two different batches are selected at random and a randomly generated number of 
orders from the first batch are moved to the second one, and vice versa. Orders whose 
addition to a batch would result in a violation of the capacity constraint will be assigned to 
a new batch. A new solution is accepted as an incumbent solution if its objective function 
value is lower than the one of the currently best known solution. Furthermore, a few dete-
riorating steps are allowed if a sequence of perturbation phases and local search phases 
applied to a particular incumbent solution does not lead to a new global best solution with-
in a certain time limit.  
Albareda-Sambola et al. (2009) apply Variable Neighbourhood Search (VNS) to the order 
batching problem. They define three different kinds of neighbourhoods, based on the fol-
lowing moves: (i) Assignment of one order to a different batch (SHIFT move). (ii) Assign-
ment of up to two orders from one batch to other batches; this includes a simple SHIFT 
move, the assignment of two orders from one batch to another batch, and the assignment 
of two orders of one batch to two different batches. (iii) Assignment of up to two orders 
from one or two batches to one or two other batches; this set includes the moves from 
neighbourhoods (i) and (ii), plus the SWAP move, the assignment of two orders from dif-
ferent batches to one single batch, and the transfer from one order to a another batch 
while an order from that batch is transferred to a third batch. In all three cases, only moves 
to feasible solutions are accepted. Starting from neighbourhood (i), the algorithm explores 
the three neighbourhoods successively. Whenever no improvement can be identified with-
in one neighbourhood, it proceeds to the next (more extensively-defined) one. Having ac-
cepted an improved solution within neighbourhood (iii), the algorithm returns to exploring 
neighbourhood (i), etc. The algorithm terminates if the incumbent solution is optimal for all 
three neighbourhoods. 

5.2. Tabu Search 

Tabu Search - developed by Glover (1986) - aims at simulating human memory processes 
by means of a so-called tabu list. This list records moves applied in previous iterations. In 
order to avoid cycling and to diversify the search, the application of these moves is set for-
bidden (�tabu�) for a particular number of iterations. In each iteration Tabu Search consid-
ers only those elements of the neighbourhood which can be obtained by a non-tabu move. 
From this solution the one with smallest objective function value, which may not be smaller 
than the objective function value of the incumbent solution, is chosen as the next incum-
bent solution. 
Henn & Wäscher (2010) explore several variants of Tabu Search for the order batching 
problem. Options for the generation of initial solutions include the FCFS-rule and C&W(ii). 
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Three neighbourhoods are investigated, namely those based on (1) SWAP moves, (2) 
SHIFT moves, and (3) SWAP or SHIFT moves. The neighbourhoods may either be ex-
plored completely or partially, only. 
Henn & Wäscher (2010) also introduce the Attribute-based Hill Climber (ABHC) heuristic 
for the order batching problem. ABHC is an almost parameter-free heuristic based on a 
simple Tabu Search principle which can be described as follows: For each problem, a set 
of attributes is introduced. An attribute can be any specific solution feature. During the lo-
cal search phase a solution can be accepted if and only if it possesses the smallest objec-
tive function value found so far for at least one attribute. The algorithm stops if the current 
neighbourhood contains no solution that represents a best solution for at least one 
attribute. The advantage of ABHC can be seen in the fact that – related to the design of 
the algorithm – only three decisions have to be taken, namely with respect to the choice of 
the initial solution, the neighbourhood structure, and the set of attributes (Whittley & Smith, 
2004). 
For the determination of the initial solution and for the neighbourhood structure Henn & 
Wäscher (2010) make use of the same options as for Tabu Search. As for the attributes, 
two sets are proposed: The first attribute set characterizes each solution by pairs of cus-
tomer orders which are assigned to the same batch. The second set of attributes is related 
to the assignment of customer orders to batches. 

5.3. Population-based Approaches 

The Rank-based Ant System (RBAS) is a population-based solution approach in which 
each ant presents a single solution (Bullnheimer et al, 1999). Henn et al. (2010) modify the 
RBAS for the order batching problem. In their method a specified number of ants is ob-
served during a period of several iterations. For each ant the algorithm starts from a solu-
tion in which each order forms a single batch. In the subsequent steps, the batches are 
combined as long as the capacity constraint for the picking device is not violated. For each 
possible combination of two batches into one, the savings (cf. Section 4.3) and the phero-
mone intensity are computed. The pheromone intensity of a batch combination is deter-
mined as a relative impression, namely as the sum of the pheromones of all order combi-
nations (i.e. of all pairs of customer orders, where one order is in the first batch and one 
order is in the second batch) over the number of possible order combinations between the 
two batches. Savings and pheromone intensity define the probability according to which 
two batches will be combined. If no further feasible combinations of batches can be identi-
fied, an attempt is made to improve the obtained solution by applying an elementary local 
search function. The process is repeated for each ant that is used. After the last ant of an 
iteration has been taken care of, the pheromones for all order combinations are updated: 
in general, a fraction of the pheromone “evaporates”, while the “good” solutions receive an 
additional amount of pheromone.  
Genetic algorithms iteratively generate a large number of possible solutions and select the 
best ones. These solutions are modified (mutation) and combined (cross-over) in order to 
generate new solutions. Hsu et al. (2005) have modified this general approach for the or-
der batching problem. Each solution is represented by a string of integers, which groups 
each customer order into a particular batch. The fitness of a solution is calculated as the 
difference between the length of the longest tour in the population and the tour length of 
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this solution. The authors also propose several crossover and mutation mechanisms for 
their algorithm. 

6. Performance of Heuristic Algorithms 

An up-to-date study which considers a comprehensive set of problem parameters and pro-
vides an in-depth analysis of the performance of a representative set of the solution me-
thods for the order batching problem does not exist in the literature so far (Gu et al., 2007). 
Published results of numerical experiments are usually based on very diverse settings 
(e.g. size and dimensions of the warehouse, number and size of customer orders, capacity 
of the picking device, demand structure, or the used routing policy). Thus, general conclu-
sions, e.g.  concerning the superiority of one method over another, are hardly possible at 
this stage.  
Gibson & Sharp (1992) analyze the performance of priority rule-based algorithms using 
space-filling curves, and that of a basic seed algorithm which combines Random Seed as 
a seed selection rule and Smallest Sum I as an order congruency rule. Their numerical 
experiments are based on a fixed warehouse with 800 storage locations. It is shown that 
the seed algorithm in which distances between locations are measured according to an 
aisle metric provides the shortest tour lengths. 
Rosenwein (1996) analyzes the performance of the following order congruency rules: 
Smallest Center of Gravity, Smallest Sum I, and Smallest Number of Additional Picking 
Aisles. For a warehouse with 750 storage locations, the Smallest Number of Additional 
Picking Aisles generates smaller average tour lengths than the two other approaches.  
De Koster et al. (1999b) have carried out extensive numerical experiments in order to in-
vestigate the performance of seed and savings algorithms.  In their experiments the heu-
ristics are evaluated with respect to parameters like the size of the warehouse (240, 400, 
1250 storage locations), the demand structure (uniformly, class-based), and the number of 
orders per batch. Their experiments show that for seed algorithms the cumulative mode 
outperforms the single mode. Furthermore, Largest Number of Picking Aisles, Longest
Travel Time, and Largest Aisle Range are the seed selection rules by which the shortest 
total tour lengths are obtained. In comparison to FCFS, the best seed-algorithms improve 
the tour lengths by 19.7% (small warehouse size) to 7.5% (large warehouse size).  
Ho & Tseng (2006) and Ho et al. (2008), in two comprehensive numerical studies, analyze 
the performance of seed algorithms. They compare various combinations of seed selection 
and order congruency rules to each other. In both articles an identical test setting for a 
warehouse with 384 storage locations is used. In the experiments of Ho & Tseng (2006) a 
combination of Smallest Number of Picking Aisles (seed selection rule) and Smallest 
Number of Additional Picking Aisles (order-congruency rule) gives the smallest tour 
lengths. Ho et al. (2008) observed that these results can be improved by combination of 
Smallest Number of Picking Aisles and Shortest Average Mutual-nearest-Aisle Distance.   
In their analysis of savings algorithms, de Koster et al. (1999b) show that C&W(ii) gene-
rates the smallest tour lengths among the described variants. For a small warehouse, the 
tour lengths obtained by application of C&W(ii) are more than 20% shorter than the ones 
obtained by FCFS. 
In de Koster et al. (1999b), also savings and seed algorithms are compared. For a small 
warehouse, C&W(ii) provides smaller tour lengths than the best seed algorithm, whereas 
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for a larger warehouse the best seed algorithm outperforms C&W(ii) in terms of solution 
quality. However, C&W(ii) consumes about ten times the computing time of the other sav-
ings algorithms and about 100-200 times the computing time required for the seed algo-
rithms. 
Bozer & Kile (2008) compare the lower and upper bound from their model (cf. Section 3.2) 
to the results obtained by their Normalized Savings approach. In total, results obtained by 
the Normalized Savings approach are 11% above the lower bound and 6 - 7.5% above the 
upper bound. In their experiments the number of customer orders is limited to 25.  
In the numerical experiments of Chen & Wu (2005) different warehouse sizes (ranging 
from 40 up to 300 storage locations) are considered. The authors demonstrate that their 
approach which combines data mining and integer programming may reduce the tour 
lengths provided by FCFS significantly.  
Henn et al. (2010) benchmark their versions of ILS and RBAS against FCFS and C&W(ii). 
Extensive numerical experiments have been carried out in which a warehouse with 900 
storage locations and a class-based demand structure have been assumed. In these ex-
periments the picker routing problem was solved by means of the S-Shape and Largest 
Gap Heuristics. The authors find that – in comparison to FCFS - C&W(ii) reduces the total 
tour length by 17%, while ILS and RBAS improve the results by approximately 20%. The 
results from ILS on one hand and RBAS on the other differ for less than 1%. 
For a similar test setting, Henn & Wäscher (2010) demonstrate that the best performing 
Tabu Search and ABHC variants manage to improve the solutions obtained by C&W(ii) by 
4.1% and 4.6%, respectively. The results provided by the iterated descent algorithm of 
Gademann & van de Velde (2005) differ from the optimal total tour length by a 1% on av-
erage and up to 6 % as the maximum. 
Albareda-Sambola et al. (2009) perform numerical experiments of their VNS approach us-
ing the warehouse layouts described in de Koster et al. (1999b) and Ho & Tseng (2006). In 
their experiments they benchmark VNS against FCFS, and several seed and savings ap-
proaches. It can be concluded that among these heuristics VNS was able to find the best 
solutions in most cases and improves the results obtained by FCFS by 19% on average. 
Hsu et al. (2005) benchmark their genetic algorithm against the results obtained by FCFS, 
considering warehouse sizes differing between 40 and 400 locations. They obtain im-
provements of up to 31%. 
As stated above, it is difficult to compare the presented results with each other due to the 
different parameter settings used in the numerical experiments. In order to make results 
more comparable, it would be useful for future research to design experiments similar to 
already existing ones. Furthermore, a systematic and comprehensive study is desirable in 
order to evaluate the performance of existing solution approaches. 

7. Wave Picking 

Wave picking is a variant of order picking in which a large set of customer orders (called 
wave) for a joint destination is released simultaneously. Different to the approaches de-
scribed before, the workload can be spread over several order pickers. Wave picking aims 
at collecting the items of the set of orders as fast as possible, even if this would result in a 
non-minimal tour length. Typically, this situation arises when this set of orders belongs to 
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the same truck load and the truck cannot leave until all orders are completed. The next 
wave can only be started when the previous one is completed (Gademann et al., 2001). 
In order to control the picking and shipping process, the following optimization problem can 
be stated: How, given routing strategy, capacity of the picking device and a fixed number 
of order pickers, can a given set of customer orders with known storage locations be 
grouped (batched) into picking orders such that the maximal processing time of all batches 
is minimized? It is usually assumed that the order pickers do not block each other when 
entering the aisles or travelling through them. Thus, the impact of congestions is not expli-
citly considered in the corresponding planning models and solution approaches. 
A similar model to the one described in Section 3.2 can also be used for a representation 
of this problem. The following additional notation is used: 

pti processing time of batch i (i�I), i.e. the time which is necessary to collect all cus-
tomer orders of batch i; 

m’ number of order pickers, i.e. the number of batches which can be processed in pa-
rallel.  

 i ii
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Again, constraints (6) and (8) ensure that a set of batches is chosen in such a way that 
each customer order is included in exactly one of the chosen batches. (7) guarantees that 
at most m’  batches are selected. The objective function (5) minimizes the maximal 
processing time of the batches. Bozer & Kile (2008) point out that solutions of this optimi-
zation problem may include situations in which order pickers may be idle while remaining 
orders are still being collected. By reducing the partition problem (Garey & Johnson, 1979) 
to the wave picking problem, Gademann et al. (2001) show that the corresponding deci-
sion variant is NP-complete.  
For the solution of the above-stated problem Gademann et al. (2001) propose a branch-
and-bound algorithm and a 2-opt heuristic. They evaluate their algorithms for several prob-
lem classes. For problem classes with up to 24 customer orders their branch-and-bound 
algorithm was able to solve all instances. For larger problem classes only a subset of in-
stances could be solved within a time limit of 600 seconds. From extensive numerical ex-
periments the authors conclude that the number of order pickers and the number of cus-
tomer orders have a significant impact on the computing time of the algorithm. They also 
demonstrate that maximal processing times provided by the 2-opt heuristic are very close 
to the optimal ones. 

8. Order Batching and Batch Scheduling

In order picking systems it is not uncommon that the customer orders have to be com-
pleted and provided by certain due dates. In distribution warehouses due dates have to be 
met in order to guarantee the scheduled departure of trucks (Gademann et al., 2001). In 
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material warehouses which provide the input to a production system (internal customers), 
on-time retrievals from the warehouse are vital in order to avoid production delays. In a 
Just-in-Time environment, in addition to not allowing orders to be late, it is also not ac-
ceptable that the items are provided a long time ahead of the due date, since that would 
result in an unnecessary accumulation of material or work-in-progress. In such cases, in-
stead of measuring the quality of a solution by means of the total picking time or the total 
length of the picking tours, the batching of customer orders into picking orders will have to 
be evaluated with respect to both earliness and tardiness of the orders. The weighted sum 
of the (total) earliness and the (total) tardiness of all customer orders may be minimized in 
order to model these aspects (Elsayed et al., 1993). The composition of the batches, but 
also the sequence according to which the batches are processed and the corresponding 
release times (i.e. the points in time when the various batches and/or customer orders are 
started) determine whether and how this goal is met.  
With respect to the described situation, the following problem can be stated: How, given 
routing strategy and capacity of the picking device, can a given set of customer orders with 
known due dates and storage locations be grouped (batched) into picking orders such that 
the weighted sum of the total earliness and the total tardiness of all customer orders is mi-
nimized?  
Elsayed & Lee (1996) have suggested an optimization model for order batching for an 
AS/RS which minimizes the total tardiness. We adopt this model here for the above de-
scribed, more general goal and introduce the following index sets and constants in addition 
to those which have already been used in the above-described models: 

ddj due date of customer order j (j�J);  
 Ji  set of customer orders which are included in batch i (i�I), i.e. Ji={j�J|aij=1};  
 M a sufficiently large (positive) number; 
  � (relative) weight for the total earliness of all customer orders; 
 � (relative) weight for the total tardiness of all customer orders. 
Furthermore, the following variables are introduced: 

 cti completion time of batch i (i�I); point in time when the order picker returns to the 
depot after having collected all items of batch i; 

 vik binary decision variable which describes whether batch i is released directly before 
batch k (vik = 1) or not (vik = 0) (i, k�I); 

 taij tardiness of customer order j (j�J) in batch i (i�I); 
 eaij earliness of customer order j (j�J) in batch i (i�I). 
Then the following mixed integer programming model can be formulated: 

 ij ij ij ij
i j i j

min� a ea � a ta
� � � �

��� ��
I J I J

 (9) 

subject to: 
 1ij j

i
a x , j ;

�

� � ��
I

J  (10) 

 i i ipt x ct , i� � � I;  (11) 
 i k ik j jct ct Mv pt x , i,k and i k;	 � 
 � � � I    (12) 
 1k i ik k kct ct M( v ) pt x , i,k and i k;	 � 	 
 � � � I    (13) 
 i ij j i ict ta dd x , j , i	 � � � � �J I;  (14) 
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 ij i j i iea ct dd x , j , i	 � � � � �J I;  (15) 
 0ict , i
 � � I;  (16) 
 0ijta , i , j
 � � �I J;  (17) 
 0ijea , i , j
 � � �I J;  (18) 
 0 1ix { , }, i� � � I;  (19) 
 0 1ikv { , }, i,k ,i k.� � � � I  (20) 

In this model, objective function (9) represents the weighted sum of the total earliness and 
the total tardiness of all customer orders. As in the previously-described models, it is guar-
anteed by constraints (10) and (19) that each customer order is assigned to exactly one 
batch. Inequalities (11) imply that the completion time of any batch is always greater than 
or equal to its processing time. For any pair (i, k) of batches i and k (i,k�I) constraints (12) 
and (13) imply that the completion time of either batch i or batch k must be greater than or 
equal to the completion time of the immediately preceding batch plus the corresponding 
processing time. Constraints (14) determine the tardiness of each customer order i (i�I);  it 
is defined by the number of time units according to which the due date of i is exceeded by 
the completion time of the batch to which it has been assigned to. Analogously, constraints 
(15) determine the earliness of each customer order. Constraints (16), (17) and (18) en-
sure that the variables assume non-negative values which represent the completion times, 
the earliness and the tardiness of the customer orders. The variables vik which describe 
whether batch i is released directly before batch k (i,k�I) are binary by definition; this is 
guaranteed by constraints (20). 
Elsayed et al. (1993) suggest a solution method for the above problem which consists of 
three steps. In step 1, priorities are determined for the customer orders. Each customer 
order is considered as a single batch and its priority value is defined by the weighted sum 
of its due date and the corresponding processing time. Customer orders are ranked in as-
cending order of their priority index. Based on this sequence the objective function value is 
determined. This sequence is updated, if a pairwise exchange of two adjacent customer 
orders can be identified which would improve the objective function value. In step 2, cus-
tomer orders are combined into batches according to the sequence established in step 1: 
For each customer order it is determined whether it is favourable to pick it separately or if it 
is better to add the customer order in one of the already existing batches. In the latter case 
the customer order is assigned to the first batch which results in a smaller objective func-
tion value. For each of the obtained batches, release times are determined (Step 3). Now 
an idle time may occur between the release time of a batch and the completion time of its 
predecessor. As a consequence the algorithm shifts batches along the time axes in order 
to obtain improved objective function values by reducing the total earliness, since earliness 
is penalized as well in the objective function.   
Elsayed & Lee (1996) propose a solution approach for the generation and sequencing of 
batches when only the total tardiness has to be minimized. At first, the customer orders 
are sequenced according to their due dates and the times that would be needed if each 
customer order would be processed in a single batch. A first bound on the optimal total 
tardiness can be obtained by assuming that the items of each customer order would be 
collected on a single tour and sequencing the tours according to the order’s position in the 
sequence. In order to improve this bound, three decision rules for the generation of 
batches are proposed and evaluated: (1) The Nearest Schedule Rule assigns the first cus-
tomer order of the obtained sequence as a seed to the first batch. Those customer orders 
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of the sequence are assigned to the batch if the inclusion does not increase the total tardi-
ness and does not violate capacity restrictions. When no further customer order can be 
added, the first remaining customer order in the sequence will serve as seed order for the 
next batch. (2) The Shortest Service Time Rule adds orders to the seed which would pos-
sess the shortest processing time, if the customer order was processed in a separate tour. 
(3) In the Most Common Location Rule, a customer order is added to the seed which has 
the largest number of pick locations in common with the seed order. In numerical experi-
ments it is shown that the Nearest Schedule Rule outperforms the two other rules and 
achieves results which are close to optimality. Additionally, the authors show how storage 
orders (orders where items have to be carried to the storage locations) can be included in 
the obtained sequence. 
Tsai et al. (2008) consider an order batching and sequencing problem where the total tra-
vel costs (depending on the total travel time) have to be minimized and earliness and tar-
diness are penalized. Unlike in the approaches previously discussed, here the authors 
permit the splitting of orders; therefore, the items required by a single customer order may 
be collected on different tours. The batching problem is solved by means of a genetic algo-
rithm. In this algorithm, a solution is represented by a sequence of integers. This sequence 
contains the indices of the batches to which the items requested in the customer order 
have been assigned. In order to determine the fitness of the generated solutions, a travel-
ling salesman problem is solved by another genetic algorithm. 
Won & Olafsson (2005) discuss a joint batching and picking problem where customer or-
ders arrive at (known) different points in time. They formulate an optimization model where 
the objective function is a weighted sum of travel distance and the time period between the 
arrival and the time when the order picker starts to collect the items of a customer order. 
The authors observe a tradeoff between the necessary travel time and the length of the 
time period for which the customer order stays in the system. In order to solve the problem 
the authors propose a two-step heuristic. In this heuristic, batches are formed by applica-
tion of the FCFS rule. The subsequent routing problem is then solved by a 2-opt proce-
dure. Additionally, they present an algorithm which solves the batching and routing prob-
lem simultaneously. 

9. Dynamic Order Batching 

9.1 Problem Description

Whereas in the static case of order batching the characteristics of each customer order 
(i.e. the requested articles and the corresponding quantities) are known in advance, the 
dynamic case (also referred to as on-line batching; cf. Yu & de Koster, 2009) can be cha-
racterized as an order picking environment in which the customer orders arrive stochasti-
cally over time, and only when an order has arrived the information becomes available of 
which articles and respective quantities the order is composed of.  
Under such conditions time window batching is prevalent, which can be carried out in two 
different ways, namely variable time window batching and fixed time window batching (Van 
Nieuwenhuyse & de Koster, 2009). In variable time window batching it is usually assumed 
that the capacity of the picking device is defined in the number of customer orders which 
can be accommodated. The order picker waits until a particular number of customer orders 
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(smaller or equal to the capacity) has arrived and then collects the items of these orders on 
a single tour. In fixed time window batching all customer orders arriving during a particular 
time interval are assigned to batches. It has to be noted that all batching decisions, i.e. 
how the orders should be assigned to batches and how the batches should be released in 
time, are to be based on the known customer orders only. 
The point in time when a customer order becomes available is called arrival time of the 
order. The waiting time of a customer order is defined by the length of the time interval 
between the arrival time of the order and its start time. The turnover time (also called 
throughput time or response time) of a customer order is equal to the length of the time 
period for which the order stays in the system, i.e. the time period between the arrival time 
of the customer order and its completion time.  
The performance of a dynamic order picking system can be measured by the (average) 
turnover time of the customer orders. This measure can be seen as an indicator of the ser-
vice level on the one hand, but also as an expression for the available capacity on the oth-
er, i.e. the number of orders which can be processed in a given period of time. Reduced 
turnover times result in improved service levels and increase the capacity of the ware-
house.  
Dynamic order batching deals with the following question: In a dynamic order picking envi-
ronment, in which customer orders arrive over time, how should the customer orders (with 
given storage locations and given routing strategy) be grouped into picking orders such 
that the average turnover time of the customer orders is minimized? 

9.2 Time Window Batching for the Minimization of Turnover Times 

The time an order picker is expected to spend collecting the items of a batch is estimated 
by travel time models. These estimations depend on several parameters, e.g. the average 
number of items to be picked on a tour, the demand distribution, or the layout of the ware-
house and its dimensions (Caron et al., 2000).  
In the literature, the order picking system is regarded as a continuous system with an infi-
nite number of arrivals of customer orders. Chew & Tang (1999) present a travel time 
model of a single block order picking warehouse with variable time window batching. 
Based on this model, an estimation for the determination of the number of customer orders 
is developed which should be assigned to a single batch in order to minimize the average 
turnover time of a customer order. On the basis of S-Shape routing, they carry out a theo-
retical analysis of travel and processing times for the first customer order in a batch. The 
system is designed as a queuing network with two queues. In the first one, customer or-
ders arrive according to a Poisson-process and batches are generated by means of the 
FCFS rule. If a particular number of customer orders is in the first queue, these customer 
orders are assigned to a batch and move to the second queue. The batches in the second 
queue are released successively according to the availability of order pickers. In numerical 
experiments the authors focus on the optimal number of customer orders which should be 
assigned to a batch such that the average turnover time is minimized. The optimal number 
depends on the storage policy and also on the pick times. A similar investigation of the 
average turnover time of a random customer order for a two block layout is carried out by 
Le-Duc & de Koster (2007). A corresponding model for fixed time window batching in a two 
block layout is presented by van Nieuwenhuyse & de Koster (2009).  



Order Batching in Order Picking Warehouses: A Survey of Solution Approaches 25

All studies show that for variable time window batching the average turnover time of cus-
tomer orders is a convex function of the number of orders per batch (batch size). A large 
batch size results in a small average processing time of each customer order. but also in a 
large average waiting time. On the other hand, the average (order) processing time is 
large for a small batch size, whereas the average waiting time is small. For fixed time win-
dow batching a similar convex function for the average turnover time of a customer order 
can be observed which is dependent on the length of the fixed time window (van Nieu-
wenhuyse & de Koster, 2009). Therefore, it can be concluded that an optimal batch size 
(or an optimal length of the fixed time window) exists which minimizes the average turno-
ver time of a customer order. The function of the average turnover time in variable time 
window batching is depicted in Fig. 9. In numerical experiments, van Nieuwenhuysen & de 
Koster (2009) demonstrate that the application of fixed time window batching can lead to 
slightly smaller average turnover times than the application of variable time window batch-
ing.  

 
Fig. 9. Average turnover time against batch size for variable time window batching  

(based on Chew & Tang, 1999) 
 
Extensions to the above-described travel time models may include multiple order pickers 
which can be modelled by additional queues (Le-Duc & de Koster, 2007). For time window 
batching, Van Nieuwenhuyse & de Koster (2009) present a combined analysis of a pick-
and-sort system, in which the collected items are sorted and packed after the picking 
process. It is assumed that the time an order spends in the picking process is also sto-
chastic. Turnover times now include the time in the picking process and the time in the 
sorting process. The authors concentrate on the allocation of workforce to both processes 
and aim at a minimization of the average turnover time.  
Yu & de Koster (2009) describe an order picking area which is divided into several zones 
of identical size. Batches of customer orders are formed according to variable time window 
batching. The items of each batch are collected sequentially by zones, i.e. at first only 
items located in the first zone are picked, then all items located in the second zone, etc. 
The batch is complete when the items from the last zone have been picked. For this kind 
of systems, Yu & de Koster (2009) give an estimation of the average turnover times and 
observe that an optimal batch size exists. 

9.3 Alternative Objective Functions and Approaches 

Kamin (1998) describes a batching problem from practice, in which greeting cards have to 
be retrieved from a warehouse. Order pickers use automated guided vehicles on a fixed 
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course collecting the items according to given customer orders. These customer orders 
arrive dynamically over time. Kamin focuses on the minimization of average turnover 
times. Therefore, the number of pick stops on the course is minimized. By means of a 
competitive analysis it is shown that every online algorithm is at least 2-competitive for 
this. Furthermore, the system is simulated and evaluated for several (simple) batching al-
gorithms according to different evaluation criteria.  
Henn (2010) describes an online order batching problem in a walk-and-pick warehouse in 
which the completion times of all (dynamically arriving) customer orders (or the makespan) 
are to be minimized. A competitive analysis reveals that any on-line algorithm for this prob-
lem is at least 2-competitive. The author also presents modifications of solution approach-
es for static order batching (FCFS, C&W(ii) and ILS) in order to deal with the dynamic situ-
ation.  

10. Summary and Outlook on Future Research 

In this paper we reviewed the literature dedicated to order batching in picker-to-parts order 
picking systems. We pointed out, that order batching is pivotal for the efficient manage-
ment and control of order picking systems in distribution warehouses, since – due to the 
large amount of manual labour – order picking is the most cost-intensive function in a 
warehouse.  
It has been shown that a large range of order batching methods exists and that research 
has evolved into several directions, of which static and dynamic batching are the predomi-
nant ones. Goals which may be used for the evaluation of solutions do not only include the 
minimization of processing times but also the earliness and tardiness of the customer or-
ders, in particular when these orders have to be shipped at specific points in time. 
We provided a comprehensive insight into order batching by giving a detailed state-of-the-
art overview of the different solution approaches which have been suggested in the litera-
ture. Application of these methods can contribute to a significant improvement of the per-
formance of the picking operations in warehouses. 
As further research opportunities, research on static order batching could concentrate on 
the minimization of the total processing time for problems involving due dates. From a 
practical point of view it would also be desirable to intensify research on dynamic order 
batching and incorporate due dates in dynamic situations. Finally, we conclude that the 
interaction of order batching with the other related planning issues (layout design, item 
location, zoning, picker routing) has not been considered sufficiently in the literature so far. 
Thus, it might be worthwhile to provide corresponding simultaneous solution approaches in 
order to obtain a �global� optimum.  
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