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Abstract 

This paper calculates the Harsanyi-Selten solutions for a class of simple signaling 

games. This means that for each generic game belonging to this class one of its 

equilibrium points is selected according to the principles developed by John C. 

Harsanyi and Reinhard Selten (Harsanyi & Selten, A General Theory of 

Equilibrium Selection in Games, 1988). For almost fifty years signaling games 

have been of great interest for both normative game theorists and scientists in-

terested in the analysis of social, cultural and biological phenomena. The paper 

provides an introduction into the Harsanyi-Selten theory, solves all generic games 

and subsumes the results. Thus comparisons to Nash refinement concepts can 

easily be done and the solution of more complex games is facilitated. 
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1. Introduction 
A signaling game is a game where one of the players (called the “sender”) can be 

of different types. The actual type is chosen by random and is informed about his 

identity. The type can choose some action (called the “signal”) observable for an 

other player (called the “receiver”). The receiver does not know the actual type 

but the probability distribution of the possible types (or, as a Bayesian, he forms 

prior beliefs about the probabilty distribution). The receiver can use the observed 

signal to update his beliefs about the actual type. Hence the actual type can 

choose the signal strategically to influence the receiver’s updated beliefs about 

his identity. It is easy to imagine situations where a type has a strong incentive 

that his true identity becomes public and other situations where the type is 

interested to feign an honourable character. 

Signaling games have been of great attractiveness in the last decades for both 

economists and game theorists, and the interest seems to increase unbrokenly. 

Starting from the pioneering works of Akerlof (1970) and Spence (1973, 1974) 

economists have realized that many situations of substantial economic 

significance are characterized by incomplete information where privately 

informed agents can strategically choose actions to affect the beliefs of 

uninformed agents about the true state of the world. A series of papers of 

Harsanyi (1967-1968) provided the framework to analyze situations of 

incomplete information with the appropriate game-theoretical tools. Harsanyi 

demonstrated that a game of incomplete information can be sensibly transformed 

into a game of imperfect information. This was a breakthrough because before no 

satisfying solution concept existed for games of incomplete information. Selten 

(1965, 1975) refined the concept of  Nash equlibrium point (Nash (1950, 1951)) 

by eliminating incredible threats and he proposed the concept of subgame perfect 

equilibrium point and (especially for games of imperfect information) the concept 

of perfect equilibrium point. So almost at the same time the insight into the 

necessity to analyze models of incomplete information and the possibility to do 

this in an appropriate way appeared. 

In the subsequent years a large number of articles and books has been published 

that apply signaling games in different economic arenas. Michael Spence, one of 

the pioneers, dedicated his 2001 Nobel prize lecture to “Signaling in Retrospect 

and the Informational Structure of Markets” (Spence (2002)). From the vast 

literature let me list only a small sample of economic or related fields to which 

signaling games of the described structure or similar structures have been 

applied and some of the corresponding arcticles: 
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� Labor market (Spence (1973, 1974, 1976), Nöldeke & van Damme (1990), 

Austen-Smith & Fryer (2005),  Delfgaauw & Dur (2007)) 

� Market entry (Milgrom & Roberts (1982a, 1982b), De Bijl (1997)) 

� Competition in product quality (Gal-Or (1989), Bagwell & Riordan (1991)) 

� Advertising  (Milgrom & Roberts (1986), Bagwell (2001), Anand & Shachar 

(2009)) 

� Insurances (Wilson (1977), Puelz & Snow (1996), Aarbu (2017)) 

� Finance ( (Ross (1977), Allen & Morris (2001), Levine & Hughes (2005)) 

� Economics of Law (Reinganum & Wilde (1986), Schweizer (1989), Friedman 

& Wittman (2007), Dari-Mattiacci & Saraceno (2017)) 

� Money Laundering (Takáts (2011)) 

� Bargaining (Rubinstein (1985a, 1985b), Admati & Perry (1987), Feinberg & 

Skrzypacz (2005)) 

� Political Science (Banks (1991), Potters, van Winden & Mitzkewitz (1991), 

Prat (2002), Gavious & Mizrahi (2003)). 

Of course the articles mentioned above are usually not solely based on “pure” sig-

naling games as described before but on games with more sophisticated signaling 

structures or on games where simple signaling games are embedded. 

Let me mention that (besides the fact that game theory as a whole has an unex-

pected predictive power in evolutionary biology) signaling games provide also a 

useful framework to study animal behavior. Impressive examples are presented 

e. g. by Grafen (1990), Godfray (1991) and Getty (2006). The philosophical 

theories of the evolution of conventions (Lewis (1969)) and of the emergence of 

language (Zollman (2005), Huttegger (2007), Skyrms (2010)) benefit also from 

the analysis of signaling games. 

Signaling games are, however, also under special observation of pure game 

theorists not mainly driven by interests in economic or whatever applications. 

The point is that simple numerical examples for some signaling games reveal the 

weakness of certain equilibrium concepts, especially of the sequential equilibrium 

(Kreps & Wilson (1982)). This means that a nontrivial signaling game can have 

(or usually has) sequential equilibrium points labelled “unreasonable”, 

“nonsensible” or “counterintuitive” by some straightforward criteria. This gave 

rise to doubts on the claim stated above that the appropriate tool to analyze 

games of imperfect (and, à la Harsanyi, incomplete) information is not really 

given by perfect equilibrium or its non-uniovalur twin sequential equilibrium. 

After realizing this in the 1980ies a series of papers was published which 

demonstrated the weakness of existing equilibrium concepts and tried to 
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overcome this weakness by “refining” these concepts. I will call this the 

“refinement programme”. Refinements are usually made in notions of the 

sequential equilibrium concept and are concerned with restrictions on the beliefs 

a player can sensibly form at information sets off the equilibrium path.  The aim 

of the refinement program is to reduce the multiplicity of sequential equilibria by 

putting more and more  requirements to the players’ “rational” choices.   

Contributions to the refinement program are for example Banks & Sobel (1987), 

Cho (1987), Cho & Kreps (1987), Cho & Sobel (1990) and Okunu-Fujiwara, 

Postlewaite, & Suzumura (1990). The most important contribution to the 

refinement program was the introduction of stable equilibria by Kohlberg & 

Mertens (1986). Stable equilibria are based on forward induction. This means that 

a player’s past behavior indicates his future behavior (which is something different 

from that his past behavior indicates his identity). Many of the papers mentioned 

above are concerned among other things with the question of how the set of 

stable equilibria can be characterized for signaling games. Surveys on the 

different refinement concepts and their implications for signaling games are 

presented by van Damme (1987) and Kreps & Sobel (1994).  

Completely different to the refinement program John C. Harsanyi and Reinhard 

Selten claimed that in any case the rational solution for a game must be a unique 
equilibrium point and that this solution cannot be derived by putting more and 

more restrictions on the equilibrium concept. Instead, given a particuliar 

equilibrium concept,  one and only one equilibrium points out of the set of all 

equilibrium points of this kind. Hence, the problem of normative game theory is 

not to create sophisticated refinement procedures but to develop reasonable 

selection criteria. This should be done from the point of view of an “expert” 

outside the game who is asked by the players (or by some of the players and, 

maybe, independent of each other) for a rational strategic recommendation.  A 

professional game theorist must be an expert for “how to play a game”, and, of 

course, he has to recommend each of his clients an equilibrium strategy and, if he 

tries to live on his new job, he has to recommend strategies belonging to the same 
equilibrium point. Therefore, a game theorist should have a theory which 
equilibrium point is the solution of a given game. Of course, such a theory has to 

reflect carefully all the strategic relationships and opportunities the game 

includes. Harsanyi & Selten (1988) present a theory that selects a unique 

equilibrium point for each finite game as its solution. To quote from Robert J. 

Aumann’s foreword of the Harsanyi-Selten book: “The major implication, like that 

of the first heavier-than-air flying machine, is that it can be done.” 
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In this study we will calculate the Harsanyi-Selten solution for a class of simple 

signaling games. This class is characterized as follows: There are just two types of 

the sender possible, each of these two types has just two different choices, and 

only after one of these two choices, called the “inside” choice, the receiver comes 

into play, not knowing, which type has sent the signal.  After being alarmed the 

receiver has two different responses which both terminate the game.  If the active 

type chooses his “outside” choice the game ends immediately. The game tree for 

this class of signaling games is later shown in section 3. Probably this is the 

simplest class of games which can capture the essence of signaling. 

In the following we calculate the Harsanyi-Selten solution for all generic games of 

the class described above. What “generic” means in our context is explained at the 

end of section 4. The author, however, also find the solution for the nongeneric 
games but to write down all the calculations will exceed the limits  of this study. 

The results are available on request.  

As the reader will see, even for the generic games it takes much effort (not only 

for the author) to go through all the case distinctions which appear to be 

necessary. The reader may ask whether the aim of this study is not too modest to 

justify such a fatiguing exertion. I give four answers to this question. 

� First, despite its frugal game-theoretical structure the class of signaling 

games we will consider can be applied to different elementary situations of 

economic relevance. Having computed the solutions for the whole class,  

the solutions for games of special interest are easily available in our 

overview of results.  

� Secondly, more complex and interesting economic and other models may 

have games belonging to our class as subgames. The Harsanyi-Selten 

theory has the property that the solution of a game prescribes for all agents 

in a subgame the same local strategies as if the subgame is solved as a 

game by itself. This subgame-consistency property makes it valuable to have 

complete overviews of the solutions of simple games in order to facilitate 

to solve more complex games where the simple games arise as subgames. 

� Thirdly, it would be interesting to compare the results of the Harsanyi-

Selten theory with the results of certain refinement concepts in the latters’ 

domain, the signaling games. Unfortunately, an overwiew how the sets of, 

e.g., stable equilibria for the whole class of signaling games considered 

here is not available. It is obvious that for a large part of the parameter 

space the refinement concepts fail to contract successfully the set of 

equilibrium points contrary to the ingenious numerical examples 
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presented in the literature. For a special model such a comparison is made 

in Potters, van Winden & Mitzkewitz (1991). 

� Finally, a lot of the concepts introduced by Harsanyi and Selten are 

involved in solving our class of signaling games. The interested reader can 

observe the concepts “at work”.  So this study can also been taken as a 

learning-by-doing introduction to the Harsanyi-Selten theory. 

This paper is organized as follows. After this introdution section 2 presents a 

brief digest of the Harsanyi-Selten theory. Section 3 defines the class of games we 

will consider and presents the solution for special members of this class, called 

the “decomposable and reducible games”. In section 4 we normalize the 

“indecomposable and irreducible games” and in section 5 we compute for generic 

cases, i. e. “for almost all” games,  their solutions. Section 6 presents an overview 

of the results and section 7 summarizes. 
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2. Relevant Elements of  the General 
Theory of Equilibrium Selection 

The theory of equilibrium selection developed by John C. Harsanyi and Reinhard 

Selten (Harsanyi & Selten (1988)) singles out a unique equilibrium point for each 

finite noncooperative game as its solution. In this section we will sketch the 

Harsanyi-Selten theory only briefly. Some important ingredients of this theory 

which will not be involved in the course of our analysis, like “strategic distance”, 

are not mentioned here. Other components are explained only to such a degree of 

complexity which is sufficient to understand the procedures in the following sec-

tions. We omit detailed discussions and justifications of the concepts and refer 

the interested reader to the book of Harsanyi and Selten. Given these limitations, 

this section could be considered as a small user’s guide for the Harsanyi-Selten 

theory. 

In the class of games we will analyze each player has just one information set, so 

there is no distinction between a player and his single agent. Because of this nor-
mal-form structure we can omit the explanation of the “standard form” of a game 

which distinguishes thoroughly between players and their agents. 

 

2.1. Some Notations and Definitions 
NORMAL FORM. A -player game in normal form  consists of 

 nonempty finite sets  and a payoff function . The set of pure strate-
gies of player  is represented by . A pure strategy combination is 

denoted by : 

 ( ) 

  
The payoff function  assigns a payoff vector  to each  : 
 

 

 ( ) 
 

MIXED STRATEGIES. A mixed strategy of player  is a  probability distribution 

over  and is denoted by . The notation  represents the probability that 

player  will choose his pure strategy . Given a mixed strategy combination 
, a particular pure strategy combination  occurs 

with the following probability: 
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 ( ) 
 
 

Thus the payoff function  can be extended to mixed strategy combinations in the 

following way: 

 (4) 

 

Here  represents the set of all pure strategy combinations. 

In the class of games we will consider each player has just two pure strategies.  

For this reason we can represent a mixed strategy of player  by a single number 

, which means the probability to choose the player’s first pure strategy (it will 

always be clear what is meant by “first”). Hence  is the probability to choose 

his second pure strategy. Pure strategy choices can be represented by  and 

. Therefore we can describe any strategy combination (pure or mixed) by a 

-tuple of the following kind: 

 (5) 
 

-INCOMPLETE MIXED STRATEGY COMBINATIONS. An i-incomplete mixed 
strategy combination  is a -tuple of mixed strategies: 

 (6) 
  
Using this notation a mixed strategy combination   can also be written as fol-

lows: 

 (7) 
  
This means that  contains player ’s mixed strategy  and the other players’ 

mixed strategies in  as its components. 

BEST REPLIES. A mixed strategy  is called a best reply to the -incomplete strat-

egy combination  if: 

 (8) 
  
We say that  is a strong best reply to  if all other strategies yield a lower pay-

off than . Of course a strong best reply must be a pure strategy. 
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EQUILIBRIUM POINTS. A mixed strategy combination   is called 

an equilibrium point of game  if for each player  his mixed strategy 

 is a best reply to . If all  are strong best replies to , than  is called a 

strong equilibrium point. Notice that we use the term “strong equilibrium point” 

different from Aumann  (1959).  

UNIFORM PERTURBATIONS. The Harsanyi-Selten theory is not applied directly 

to the game  under consideration but to uniform perturbations of this game, de-

noted by . Each pure strategy of a player must be chosen with a minimal proba-

bility , where  is supposed to be close to zero but positive.  can be interpreted 

as the probabiltity to choose the “wrong” pure strategy by error due to “trembling 

hands”. The term “uniform” refers to the fact that the perturbation parameter  is 

the same for all players and for all pure strategies. This differs from Selten’s gen-

eral definition of perfectness (Selten (1975)). 

In the class of games we will consider each player has just two pure strategies. So 

we can describe each mixed strategy combination which is admissible in the uni-

formly perturbed game as follows: 

 (9) 
  
Of course  is supposed. If player  chooses or , we say 

that he plays an -extreme strategy. He “tries” to play one of his pure strategies 

and the other pure strategy can only appear by mistake. We will indicate by  

the -extreme strategy combination which corresponds to the pure strategy com-

bination . 

UNIFORMLY PERFECT EQUILIBRIUM POINTS. The limit equilibrium points of 

the uniformly games  for  are called the uniformly perfect equilibrium 
points of the unperturbed game . 

The Harsanyi-Selten theory requires that the solution of a game must be one of its 

uniformly perfect equilibrium points. But Harsanyi and Selten do not select di-

rectly among these equilibrium points (if there are more than one).  They first 

solve (i.e., they single out a unique equilibrium of) the perturbations of the game 

and then, by letting , they obtain the limit solution of the game. 

Hence it must be kept in mind that in the following descriptions of how to solve a 
game we deal with (uniformly) perturbed games. 
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2.2. Decomposition and Reduction 
The first step in solving a game is to check whether this game is decomposable. To 

understand what this means, we need some further definitions. 

CELLS. A proper subset of players forms a cell if for each of these players the stra-

tegic situation only depends on the other members of the cell and is completely 

independent of the strategic choices of the players outside the subset. In other 

words, this subset is closed with respect to the best-reply correspondence. A cell 

is called elementary if it contains no proper subset of players which forms a cell 

by itself. 

DECOMPOSABLE GAMES. A game is called decomposable if it has at least one cell. 

Otherwise it is called indecomposable. Obviously an elementary cell is indecom-

posable. 

FIXING A PLAYER. We say that a player is fixed at a particular strategy if after 

this fixing a game is considered which results from the substitution of this play-

er’s strategy set by this particular strategy and from modification of the payoff 

function in the appropriate way. We emphasize that with such a strategy fixing 

always a new game results from a more complex one. 

INFERIOR CHOICES. A pure strategy  of player  is called inferior if he has a 

pure strategy  which is always a best reply whenever  is a best reply, but also 

in some cases where  is not a best reply. Since in our class of games each player 

just has two pure strategies, the term “inferior” is here equivalent to “weakly 

dominated”. This is obviously not true for more than two pure strategies. Notice 

that the original Harsanyi-Selten definition of inferiority is concerned with choic-

es of an agent and not with pure strategies of a player. We do not need such a dis-

tinction here because in our games each player has only one information set (and, 

therefore, no agents). But in order to match Harsanyi’s and Selten’s terminology, 

we will speak of inferior choices instead of “weakly dominated strategies”. 

ELIMINATION OF INFERIOR CHOICES. If a player has an inferior choice, this 

choice is eliminated from his strategy set. But notice that this elimination takes 

place within the perturbed game. In the class of games we will consider the elimi-

nation of an inferior choice means nothing else but fixing the respective player at 

his -extreme strategy concentrated on his superior pure strategy. The inferior 

choice is still chosen “erroneously” with probability . 
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SEMIDUPLICATE CLASSES. If some pure strategies of a player yield always the 

same payoff to him independent of the strategies chosen by the other players, we 

say that these pure strategies are semiduplicates or that they form a semiduplicate 
class. 

CENTROID STRATEGY. The mixed strategy of a player which assigns the same 

probability to each of his pure strategies is called his centroid strategy. Hence, 

  is player ’s centroid strategy if he has two pure strategies. This is not the 

exact definition proposed by Harsanyi and Selten, but sufficient for our purposes 

and more convenient. 

ELIMINATION OF SEMIDUPLICATE CLASSES. If the pure strategies of a player 

form a semiduplicate class, this class is eliminated by fixing this player at his cen-

troid strategy. 

IRREDUCIBLE GAMES. A game is called irreducible if it is indecomposable and 

has neither inferior choices nor semiduplicate classes. Otherwise the game is 

called reducible. 

DECOMPOSITION AND REDUCTION. The procedure of decomposition and reduc-
tion tries to facilitate the task of solving games to the simpler task of solving irre-

ducible games. How to solve an irreducible game is explained in the following 

subsections. The precise procedure of decomposition and reduction is best ex-

plained by the flowchart on page 127 in Harsanyi & Selten (1988) or by the 

flowchart in Güth & Kalkofen (1989) on page 39. For our purposes a much more 

superficial description is sufficient. It will turn out that games of our class are 

only decomposable if they contain inferior choices and/or semiduplicate classes. 

Within our framework we can describe the procedure of decomposition and 

reduction by the following steps: 

� STEP 1: If the game is irreducible, carry on with STEP 4. Otherwise 

carry on with STEP 2. 

� STEP 2: If the game contains inferior choices, eliminate them and 

carry on with STEP 1. Otherwise carry on with STEP 3. 

� STEP 3: Eliminate the semiduplicate classes and carry on with STEP 

1. 

� STEP 4: Compute the solution of the irreducible game (see the fol-

lowing subsections). 

Here the term “game” always means the original perturbed game after previous 

elimination steps. So each game will be reduced to an irreducible game after fi-

nitely many steps. 
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2.3. The Linear Tracing Procedure 
LINEAR TRACING PROCEDURE. An important component of the Harsanyi-Selten 

theory is the so-called linear tracing procedure, introduced by Harsanyi (1975). 

The linear tracing procedure is an attempt to extend principles of Bayesian 

rationality from one-person decision problems to -person noncooperative 

games. It is assumed that players form prior beliefs about the other players’ 

strategic intentions, maximize their expected payoffs on the base of these beliefs, 

modify continuously the prior beliefs by “observing” more and more of the other 

players’ maximizing behavior, and change in case of need their own actions on 

the base of these modified beliefs. Formally, player ’s payoff function  of a 

given game  is transformed to: 

 (10) 
  
Here  is the so-called tracing parameter with . The tracing parameter 

can be loosely interpreted as “time”, so  marks the beginning and  

marks the end of the process generated by the linear tracing procedure. The prior 

beliefs (or simply the priors) of player  about the other players’ strategic inten-

tions are expressed by the -incomplete mixed strategy combination  , whereas 

 and   are player ’s and the other players’ actual mixed strategies at time t. 
Each player is assumed to  choose  at time  in order to maximize . To put it 

differenty, player  plays at time  a best reply to the following -incomplete 

mixed strategy (see also Harsanyi & Selten (1988), p. 142n): 

 ( 1) 
  
Hence, at time  player  plays a best reply to his priors independent of the 

other players’ actual strategies, which are in fact their best replies to their priors. 

When  increases player  lays less stress on his priors and lays more stress on 

the “observed” actual strategies of the other players. At time  the influence 

of the priors completely vanished and, since all players choose best replies to the 

other players’ actual strategies, an equilibrium point of the original game  is 

reached. 

PATH AND RESULT OF THE LINEAR TRACING PROCEDURE. We will say that 

the set of pairs  for all  describes the path of the linear tracing pro-
cedure. In some cases, however, the path of the linear tracing procedure is not 

well-defined. We will discuss this problem at the end of this subsection. For the 

moment let us assume that no difficulties of this kind arise. Then it is clear that 
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the path of the linear tracing procedure ends in an equilibrium point of the con-

sidered game. This equilibrium point is called the result of the linear tracing pro-
cedure. 

If the strategy combination given by the best replies to the priors (i. e.  at ) 

forms an equilibrium point of the considered game, it is obvious that this strategy 

combination will be played along the whole path of the linear tracing procedure 

up to the end (because in this case for each player  his strategy is a best reply to 

both  and  and, therefore, also a best reply to each convex combination of 

these two -incomplete strategy combinations). 

DESTABILIZATION POINTS. If the vector of best replies to the priors does not 

form an equilibrium point of the considered game, it is clear that at least one 

player must alter his strategy along the path of the linear tracing procedure at 

some time . This value for  is called this player’s destabilization point. 

STRATEGY SHIFT. At a player’s destabilization point a player shifts his strategy. 
Maybe after the strategy shift an equilibrium point is reached and then this strat-

egy combination is followed in the further path of the linear tracing procedure. 

But it is also possible that a series of strategy shifts is necessary to reach an equi-

librium point at the end. Notice that with each strategy shift of a player  at time t 

payoff shifts for all players are usually connected (  changes in the modified 

payoff functions given by (10) for all players j with ). So it is important to 

calculate who is the first player to shift his strategy. It is the player with the small-

est value for t at his destabilization point. After his strategy shift the new destabi-

lization points are calculated (if there are some) and the next player to shift his 
strategy is determined, etc. Let us mention that even if the path of the linear trac-

ing procedure is well defined, it can have so-called backward-moving variable 
segments (see section 4.19 in Harsanyi & Selten (1988)). In our analysis this 

phenomenon will not arise and so we omit any discussion of this issue.  

The tracing procedure is involved in three ways in Harsanyi’s and Selten’s 

solution concept. The three jobs of the linear tracing procedure are: 

� Risk-dominance comparison between two equilibrium points 
� Forming a substitute of a candidate set 
� Computation of the solution of a basic game. 

In the next subsection we will explain at which steps of the solution procedure 

these three jobs come into play. Here we describe the implications for the 

construction of the priors. 
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RISK-DOMINANCE COMPARISON. Consider the situation that all players are 

convinced that the solution of a game is one out of two equilibrium points, say  

and , with the property that  holds for each player i. It will turn out that 

in our analysis only comparisons between strong equilibrium points are 

necessary, so the following explanations are restricted to such a situation. Each 

player i is assumed to be initially doubtful about the “correct” equilibrium point, 

but he believes that all the other players know the correct one and consequently 

they will play jointly either  or . According to Bayesian rationality player i 
must form a subjective probability, say , for the event that the other players 

choose  and a subjective probability  for the event . Therefore player i 
is assumed to play initially ( ) a best reply to the following i-incomplete joint 
mixture: 

 ( 2) 
  
Since  and  are strong equilibrium points, there must exist for each player i a 

particular value  with , such that  is  for all  a strong 

best reply to the joint mixture given in (12), but for all   is a strong 

best reply. 

But how does player i form his subjective probability  about the “correct” equi-

librium point? Or, to put it more precisely, what should the other players think 

about the way player i forms ? As Bayesians the other players have to construct 

a distribution function of  over the interval . Because the initial state must 

be considered as a situation of complete naivety, there is no reason whatsoever to 

put more weight on a specific value of  than on another one.  Hence, Harsanyi 

and Selten assume that  is uniformly distributed over the interval . 

 This has the consequence that player i is assumed to choose initially (at )  

with probability  and  with probability , where as explained above  is 

that particular value of  of player i that makes him indifferent between  and 

. So the prior beliefs about player i are that he plays the following mixed strate-

gy: 

 ( 3) 
  
These priors are also called the bicentric priors because just two equilibrium 

points are compared. 

Given these priors for all players, the path of the linear tracing procedure can be 

computed. If the result of the linear tracing procedure is , than we will say that  

 risk-dominates . If  is the result,  risk-dominates . 
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SUBSTITUTION OF A CANDIDATE SET. Sometimes in the calculation of the 

Harsanyi-Selten solution for a given game the linear tracing procedure is used to 

substitute a set of equilibrium points by a single equilibrium point. In such a case 

the priors about player i are formed by the equally weighted average of his mixed 

strategies used in the equilibrium points of the set that should be substituted. In 

our case it will turn out that only sets of two pure equilibrium points must be 

substituted, so the priors are simply given by the players’ centroid strategies (see 

subsection 2.2). With the term “substitution of a candidate set” used in the next 

subsection we mean the following: If we replace a set of equilibrium points (the 

candidate set) by that equilibrium point which is the result of the linear tracing 

procedure using the players’ centroid strategies as their priors, then we say that 

this set of equilibrium points is substituted.  

SOLUTION OF A BASIC GAME. In the next subsection we introduce the concept 

of a basic game. Here we want to state that the solution of a basic game is the re-

sult of the linear tracing procedure using the players’ centroid strategies in that 

basic game as their priors.  

EXISTENCE OF A WELL-DEFINED PATH OF THE LINEAR TRACING PROCE-
DURE. Hitherto, we have excluded any discussion about the uniqueness of the 

path (and, therefore, the result) of the linear tracing procedure. Unfortunately, 

such a well-defined path exists only for “almost all” games. For example, in a game 

of complete symmetry (or complete asymmetry) between two players, they will 

have the same destabilization points and the path of the linear tracing procedure 

does not have a unique continuation after this point (think of a symmetric “battle 

of sexes” game). 

Harsanyi and Selten attempted to single out a unique equilibrium point for all fi-
nite games and not only for the generic subset. So they could not be satisfied that 

the linear tracing procedure as one of their most important tools in solving games 

lead to dubious results in nongeneric cases. Therefore they introduced the loga-
rithmic tracing procedure. The logarithmic tracing procedure generates a well-

defined path for all finite games and the result of the logarithmic tracing proce-

dure is the same as the result of the linear tracing procedure if the latter’s path is 

well-defined. Hence the logarithmic tracing procedure can be considered as a 

generalization of the linear tracing procedure. 

The payoff function along the logarithmic tracing procedure differs from that of 

the linear tracing procedure (see (10)) by an additional logarithmic term which 

“punishes” to some extent each deviation from the player’s centroid strategy. This 
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term ensures that for each  each player has a unique best reply in complete-

ly mixed strategies to any strategy combination of the other players. 

The logarithmic tracing procedure only comes into play in nongeneric games. In 

this work we will only determine the solution of the generic elements in our class 

of signaling games, therefore the linear tracing procedure is sufficient. Since 

1988, when Harsanyi’s and Selten’s book was published, some properties of the 

tracing procedure and its computability are investigated in more detail (Schanuel, 

Simon & Zame (1991),  van den Elzen & Talman (1995), van den Elzen (1996), 

Herings & van den Elzen  (2002)).  However, for our purposes these advances are 

of no relevance. 

 

2.4. Solution of Irreducible Games 
After the preparations given in subsection 2.2 (the process of decomposition and 

reduction) and in subsection 2.3 (the linear tracing procedure), we want to ex-

plain in this subsection how Harsanyi and Selten solve an irreducible game (for 

the definition see subsection 2.2). However, we need some further definitions. 

FORMATIONS. Consider a game  which results from a game G by eliminating 

some pure strategies (and changing the payoff functions in the appropriate way). 

If for each i-incomplete mixed strategy combination permissible in F player i’s 

best replies in G are all contained in F, and if this holds for each player, we call F a 

formation.  

PRIMITIVE FORMATIONS.  A formation is called primitive if it contains no prop-

er subformations. For example, a strong equilibrium point generates a primitive 

formation. However, strong equilibrium points do not always exist. Harsanyi and 

Selten introduced the concept of a primitive formation to have a concept with 

similar stability properties as a strong equilibrium point. 

BASIC GAMES. A game is called basic if it is irreducible and if it contains no for-

mations. Hence, each irreducible game must be basic or it must contain some 

primitive formations. 

INITIAL CANDIDATES. The initial candidates for the solution of an irreducible 

game are defined as follows: If the game is basic, then the solution of this basic 

game is the only initial candidate. If the game is not basic, then the solutions of 

the primitive formations of this game are the initial candidates. The set of initial 

candidates is also called the first candidate set. 
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It will turn out that in the class of games we consider a game can have two primi-

tive formations at most, and that in this case these two primitive formations must 

be generated each by a strong pure equilibrium point. So the first candidate set 

contains either one (pure or mixed) or two (pure) equilibrium points.  

If there is only one candidate, this equilibrium point is the solution of the game. If 

we have two initial candidates, we first look whether one of them strictly payoff-

dominates the other one. If this is not the case, a risk-dominance comparison via 

the linear tracing procedure between these two equilibrium points is necessary 

(see subsection 2.3). The solution of the game is then the equilibrium point that 

dominates (strictly payoff-dominates or risk-dominates) the other one, where 

priority is given to payoff-dominance. However, it is possible that neither (strict) 

payoff-dominance nor risk-dominance exist between two equilibrium points. No 

risk-dominance relationship between two equilibrium points is given if the path 

of the (logarithmic) tracing procedure with the bicentric priors does not end in 

one of these equilibrium points. This can only happen in degenerate cases. Then a 

substitution step becomes necessary. 

SUBSTITUTION OF A CANDIDATE SET (see also subsection 2.3).  If the first can-

didate set consists of two equilibrium points without dominance relationship, we 

substitute this set by the equilibrium point which is the result of the tracing pro-

cedure using the players’ centroid strategies as their priors. This equilibrium 

point is the solution of the game. Notice that this resulting equilibrium is general-

ly not among the two initial candidates. For example, in a symmetric battle-of-

sexes game the first candidate set consists of the two pure equilibrium points, but 

its substitute (and, therefore, the solution of the game) is the mixed equilibrium 

point. 

SUMMARY OF PROCEDURES. In subsection 2.2 we explained how games are 

transformed to become irreducible games. In the present subsection we defined 

how an irreducible game is solved. First, we check whether the game is basic. If 

the game is basic we compute its solution, which is the result of the linear tracing 
procedure using the players’ centroid strategies as their priors. If the game is not 

basic, we compute the solutions of its primitive formations. If the game has two 

primitive formations (generated by two pure equilibrium points), we make a 

payoff-dominance comparison and, if necessary, a risk-dominance comparison be-

tween the two generating pure equilibrium points. If no dominance relationship 

exists we compute the result of the linear tracing procedure using the players’ cen-
troid strategies as their priors.  In any case we come out with a unique equilibrium 

point which is called the solution of the game. 
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Pay special attention to the fact that all procedures mentioned above are done 

within the perturbed game. The solution of the unperturbed game is obtained as 

the limit of the solutions of its perturbations letting  go to zero. 

 

2.5. Solution of 2x2 Games with Two Strong     
Equilibrium Points 

In many game-theoretical models 2x2-games arise as subgames or cells (see sub-

section 2.2). Therefore their solutions are of special interest. Here we are con-

cerned only with the equilibrium selection problem resulting of a 2x2-game with 

two strong equilibrium points. Let such a game be given as follows (figure 1): 

 

 Player 2 

  

Player 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A 2x2-game with the two strong equilibrium points 
 and  because we assume that , 

,  and  hold. For each strate-
gy combination, player 1’s payoff is shown in the upper left 
corner and player 2’s payoff is shown in the lower right cor-
ner of the respective square. 

 

 

The game described in figure 1 can be transformed in a best-reply structure pre-
serving game, as shown in figure 2: 
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 Player 2 

  

Player 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: A 2x2-game with the two strong equilibrium points 
 and  which results from the following best-

reply structure preserving transformations: 
, ,  and 

. 

 

The term “best-reply preserving transformations” simply means that after some 

payoff manipulations of a game G a game G’ is received with the property that for 

each player his best replies against all opponents’ strategy combinations are the 

same in both games. 

Harsanyi and Selten provide an axiomatic foundation for the risk-dominance 

comparison between two pure equilibrium points of a 2x2-game like in figure 2. 

In their book they proof that three plausible requirements on the solution of the 

selection problem between the two equilibrium points  and  are 

only fulfilled by the following criterion: 

�  is the solution if  holds. 
�  is the solution if  holds. 

The mixed equilibrium of the game is its solution if   holds. 

Furthermore, Harsanyi and Selten show that these results are equivalent to those 

obtained by making a risk-dominance comparison between the two equilibrium 

points via the linear tracing procedure (see subsection 2.3). This means that the 

axiomatically founded solution concept for 2x2 games with two strong equilibri-

um points is embedded into the general solution theory for all games roughly de-

scribed in this section. The comparison of the payoff products  and  is 
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similar to the analysis of the Nash product (Nash (1953)). In consequence, this 

embedding is called the Nash property of the Harsanyi-Selten theory. 

The solution of a 2x2-game can therefore be obtained without explicitly making 

use of the tracing procedure. If the game is given as in figure 1, then you have to 

check whether one of the two equilibrium points strictly payoff-dominates the 

other one. In this case, the payoff-dominating equilibrium point is the solution of 

the game. Otherwise, you have to transform the game into a game as in figure 2 

preserving the best-reply structure. Then you have to compute which of the equi-

librium points yields the higher “Nash product”. This one is the solution of the 

game. If both equilibrium points yield the same Nash product, the mixed equilib-

rium of the game is its solution. 

In the following lemma we show that there exists a simple measure equivalent to 

the Nash product criterion in 2x2-games, which is in some applications easier to 

compute (see Potters, van Winden & Mitzkewitz (1991)). 

LEMMA. Given a 2x2-game as in figure 2. Then the two pure strategies (one for 

each player) chosen in the pure equilibrium with the higher product of payoffs 

(Nash product) are chosen in the mixed equilibrium point of the game with 

probabilities adding up to less than 1. 

PROOF. In the mixed equilibrium  of the game in figure 2 the strategies  

and  are chosen with the following probabilities: 

 ( 4) 

 
 

 

 ( 5) 
 

 
It follows: 

 

  
 ( 6) 

  
  
Since all  and  are greater than zero, it follows that  if  

and that  if .  

We  make use of this result in our analysis. 
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3. The Class of Games Considered and 
the Solution of Its Decomposable and 
Reducible Members 

Consider the following class of signaling games. The sender is one of two types 

which occur with known positive probabilities  and . Each type has to 

choose between two alternatives: the move “inside” and the move “outside”. If the 

activated type chooses “outside” the game is finished, but if he chooses “inside” a 

receiver observes this message without being informed about the sender’s type. 

Afterwards, the receiver has to choose between two responses, called “left” and 

“right” to terminate the game. At each of the six possible endpoints of the game 

the players receive their respective payoffs. Following Harsanyi (1967-1968) we 

consider the two types as different players, hence the payoff vectors have three 

components. Figure 3 shows the extensive form of the game without specifying 

the payoff vectors. The two types of the sender are called player 1 and player 2, 

and the receiver is called player 3. Nature choosing sender’s type by chance is 

called player 0. 

 

 

 

 

 

 

 

 

 

 

Figure 3: The extensive form of the considered class of 
games. Information sets are indicated by the dotted lines. 
Payoff vectors are unspecified. 
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NORMALIZATION. In this section, we make some steps to normalize this class of 

signaling games as follows: A type always receives nothing if he is not active. Fur-

thermore, we subtract the payoff vector after an “outside” choice of a type from all 

three payoff vectors which can be achieved if this type has become active. This 

transformation preserves the best-reply structure for all players. By this proce-

dure the new payoff vectors of the normalized game are obtained. The payoffs are 

named as in figure 4. We will call this steps semi-normalization. In section 4, deal-

ing with the indecomposable and irreducible games, we will proceed with the 

normalization. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The extensive form of the semi-normalized games.  

 

DECOMPOSITION AND REDUCTION. Now we explain the meaning of “decom-
posable” and “reducible” (see subsection 2.2) in the normalized signaling games. 

Fortunately, for the simple game structure considered here the two concepts are 

closely connected. 

ELEMENTARY CELLS. First we look on possible kinds of elementary cells (see 

subsection 2.2). Obviously, the two types together cannot form an elementary cell 

because their best replies are always independent from each other. Furthermore, 

the receiver together with one type cannot form an elementary cell by the follow-

ing reason. If they form a cell, the receiver must be independent from the strategy 
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left left right right 

inside inside outside outside 
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of the other type and, therefore, the receiver should calculate only for the situa-

tion after an “inside” choice of the cell type. But this means that the receiver’s best 

reply is independent of the probability of this move. Consequently, in this case the 

receiver forms an elementary cell by himself. It follows, that,if signaling games of 
our class are decomposable, an elementary cell is formed by a single player. 

CONDITIONS THAT A TYPE FORMS A CELL. By definition, the best-reply struc-

ture of a type forming a cell must be independent of the receiver’s strategy. This 

situation can occur in three ways: 

1. The cell type receives in one case more than null and in the other case at 

least null after an “inside” choice in dependence on the receiver’s response. 

This means that the cell type’s “outside” choice is inferior. 

2. The cell type receives in one case less than null and in the other case he re-

ceives null at most after an “inside” choice in dependence on the receiver’s 

response. This means that the cell type’s “inside” choice is inferior. 

3. The cell type receives always null. This means that his two pure strategies 

are semiduplicates (see subsection 2.2). 

CONDITIONS THAT THE RECEIVER FORMS A CELL. This  situation is given in 

two cases : 

1. One of the receiver’s choices is (weakly) dominated. Then this pure strate-

gy is, of course, inferior. 

2. The payoffs of the receiver only depend on the active type but not on his 

own choice. Then his two pure strategies are semiduplicate classes. 

REDUCTION. In our simple games, the process of solving first the one-person 

cells is equivalent to the process of reduction. Every player who forms a cell is 

fixed at his superior choice (if he has an inferior choice) or at his centroid strategy 

(if his pure strategies are semiduplicates). If all three players form cells for them-

selves the solution of the game is obtained immediately by such strategy fixing. 

Otherwise, the reduced game has to be analyzed further. Solutions for all decom-

posable signaling games of our class are developed in the following subsections. 

The results of the somewhat tedious case-by-case analysis are summarized in an 

overview presented in section 6 after the results of the indecomposable and irre-

ducible games have also been calculated in section 5.  
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3.1. At least the receiver forms a cell 
The situations are quite similar if only the receiver forms a cell or if the receiver 

and one type form cells or if all three players form cells. This similarity arises 

from the fact that at the latest after the elimination of the receiver’s inferior choice 

or of his semiduplicate class both types will form cells by themselves. In these 

cases, the solution of the reduced game is obtained by fixing the types at their su-

perior choices (if they have inferior choices) or at their centroids (if their pure 

strategies are semiduplicates). 

In the remaining subsections those situations are considered in which at least one 

type forms a cell but the receiver does not. 

   

3.2. Both types form cells 
In this case it is necessary to look at the -perturbed game. First, both types are 

fixed at their superior choices or at their centroid strategies. But notice that in the 

perturbed game inferior choices still occur with probability . Table 1 presents 

the conditional probabilities that the node after player 1’s “inside” choice (the left 

node in player 3’s information set in figure 3) is reached, given that the receiver 

has observed an “inside” choice. 

 

Probability for player 3’s left 

node after fixing the types 

Player 2 

Inferior choice 

“inside” 
Inferior choice 

“outside” 
Semiduplicate 

Class 

Player 1 

Inferior 

choice 

“inside” 
   

Inferior 

choice 

“outside” 
   

Semi-

duplicate 

class 

   

 

Table 1: Conditional probabilities that the node after player 
1’s “inside” choice is reached, given that the receiver ob-
served an “inside” choice. 



[26] 
 

Given these conditional probabilities, the receiver is able to compute which of his 

two responses yields a higher expected payoff. This response is his -extreme 

strategy in the perturbed game. If both responses yield the same expected payoff, 

the receiver has to choose his centroid strategy. By letting , the limit solu-

tion of the game is obtained. 

 

3.3. Only one type forms a cell – he has the inferior 
choice “outside” 

In the remaining parts of section 3 the cell forming type is always called player 1. 

In this subsection we consider the reduced game after elimination of an inferior 

“outside” choice of player 1. However, this choice occurs with positive probability 

due to the perturbation. The two responses of the receiver are called  and , 

and player 2’s “inside” choice is called  and his “outside” choice is called . 

The payoffs are named as in figure 4. 

Since player 2 and player 3 do not initially form cells in the case considered in 

this subsection, the following conditions for the payoffs must hold: 

 ( 7) 
 

 ( 8) 
 

Without loss of generality we can assume that the receiver’s responses are named 

in such a way that  holds. In the reduced perturbed game (after elimi-

nation of player 1’s inferior “outside”) player 2 does obviously not form a cell. But 

player 3 gets an inferior choice  if the following inequality holds: 

 ( 9) 
 

This inferiority results from the fact that the left node in player 3’s  information 

set is reached in the reduced game with probability , but the right node is 

reached with probability  at most. If (19) holds, player 3 is fixed at 

 and finally player 2 has to choose  if  and  if . 

If (19) does not hold the reduced game is not further decomposable and reduci-

ble. Therefore, the equilibrium points of this game are examined. The probability 

that player 2 chooses  is called  and the probability that player 3 chooses  

is called . Best reply of player 2 is  if either (20) or (21) holds: 
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 (20) 

  

 (21) 

 

Since (17) holds, we have always .  

 is a best reply of player 3 if: 

 (22) 
 

  
Since (18) holds and (19) does not hold in the situation considered, it follows 

that . 

First, consider the case that . The best-reply correspondences are shown in 

figures 5 and 6 for arbitrary values of , b and c. For sufficiently small values of  

we must have  and . 

                           

 

 

 

Figure 5: Best-reply correspondence of player 2 in a subclass 
of subsection 3.2.  

 

                           

 

 

 

Figure 6: Best-reply correspondence of player 3 in a subclass 
of subsection 3.2.  
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Obviously, the (mixed) strategy combination  is the only 

equilibrium point of the reduced game. Defining  as player 1’s probability to 

choose  (his “inside” choice), the limit solution of the whole game is therefore 

. 

The situation is quite different for . Player 3’s best-reply correspondence is 

the same as in figure 6, and player 2’s best-reply correspondence is obtained by 

interchanging  and  in figure 5. The reduced game has three strategy com-

binations  as equilibrium points:  and . The 

third one is not in the first candidate set for the solution of the reduced game be-

cause it is not the solution of a primitive formation (see subsection 2.4). There-

fore, the first candidate set contains only the two -extreme equilibrium points 

 and .  We first analyze under which conditions there is a pay-

off-dominance relationship between these two equilibrium points. 

At the first equilibrium point, player 2’s (expected) payoffs are approximately 

 for sufficiently small , hence they are strictly positive (since ). At 

the second equilibrium point, his expected payoffs are approximately null. Simple 

computations show that the (expected) payoffs of player 3 are at least as much at 

the first equilibrium point than at the second one, if the following inequality 

holds:  

 (23) 

 

This inequality is independent of  because the knot at which player 3 receives 

this payoff is reached in both equilibrium points with the same probability (i.e. 

). In the case we consider,  (19) does not hold. Therefore we have: 

 
(24) 

 
 

Thus, (23) always holds if is nonnegative or if it is negative but its absolute 

value is small enough. Hence, the equilibrium point  payoff domi-

nates the equilibrium point  for sufficiently small  if: 

 (25) 

  

In this case, the limit solution of the game is . 

If (25) does not hold (this implies that  is negative and its absolute value is 

large enough) there is no payoff-dominance relationship between the two equi-
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librium points in the first candidate set. Therefore a risk-dominance comparison 
between the two candidates becomes necessary.  

Since the reduced game is a 2x2-game, the lemma of subsection 2.5 can be ap-

plied. It implies that the sums of the probabilities chosen in the mixed equilibri-

um point for those strategies used in the first pure equilibrium point determines 

the result of the risk-dominance comparison. In our case it follows: 

� If , the equilibrium point  risk-

dominates the equilibrium point . This condition is satisfied for each 

 if  holds. Hence, in this case we obtain  

as the limit solution of the game, too. 
� On the other hand, if  holds, the inequality  is 

implied for sufficiently small . In this case the equilibrium point  risk-

dominates the equilibrium point  and we obtain 

 as the limit solution of the game.  

 

3.4. Only one type forms a cell – he has the inferior 
choice “inside” 

Now we consider the reduced perturbed game after fixing player 1 at his “outside” 
choice. Clearly, (17), (18) and  still hold.  Player 3 obtains (after the 

fixing) an inferior choice  if the following inequality holds: 

 (26) 
  
The definition of  given by (22) implies that (26) is equivalent to . If (26) 
holds, player 3 is fixed at his  choice, and, finally, player 2 must choose  if 

 or  if .  

If (26) does not hold, we must look at the equilibrium points of the reduced per-

turbed game. The best-reply structure is still given by (20) and (21). Different to 

(22),  is a best reply of player 3 if the following inequality holds: 

 (27) 

  
Since (26) does not hold, we have  for each  and we have  

for sufficiently small .  For  the situation is illustrated in figures 7 and 8. 
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Figure 7: Best-reply correspondence of player 2 in a subclass 
of subsection 3.3.  

 

                           

 

 

 

Figure 8: Best-reply correspondence of player 3 in a subclass 
of subsection 3.3.  

 

The mixed-strategy combination  is the only equilibrium point of 

the reduced perturbed game. Hence, for  we obtain  as 

the limit solution of the whole game. 

In the case  the best-reply correspondence of player 2 is obtained by inter-

changing  and  in figure 7. Now the reduced game has the three equilibrium 

points ,  and . The first two equilibrium points form the 

first candidate set. Like in subsection 3.3 player 2’s (expected) payoffs at the 

-equilibrium point are approximately  (hence, strictly posi-

tive) and approximately null at the -equilibrium point. The (expected) pay-

offs of player 3 at the first equilibrium point are not smaller than at the second 

one if the following holds: 

 (28) 

  
Since , inequality (28) is fulfilled for sufficiently small  if  holds. 

In this case the -equilibrium point payoff-dominates the -

equilibrium point. The limit solution of the game is . 
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If  and , a risk-dominance comparison between the two -extreme 

equilibrium points is necessary. If  goes to zero, then in the mixed equilibrium 

point of the reduced game the sum of the probabilities of the pure strategies used 

in the equilibrium point  approaches , whereas the sum of the 

probabilities of the pure strategies used in the equilibrium point  

approaches . According to the lemma of subsection 2.5, we obtain the result 

that the -equilibrium point risk-dominates the -equilibrium 

point. Again, the limit solution is . Hence, for  the limit 

solution is independent of the sign of . 

 

3.5. Only one type forms a cell – his pure strate-
gies are semiduplicates 

In this subsection we consider the reduced game after fixing player 1 at his cen-

troid strategy (because his two pure strategies are semiduplicates). As before, 

(13), (14) and  hold. After fixing player 1, player 3 gets an inferior 

choice  if the following inequality holds: 

 (29) 
  

This inequality is equivalent to  (see the implicit definition of c given in 

(22)). If (29) holds player 3 is fixed at his choice . Then, player 2 must choose 

 if  and  if . 

If , player 3 has the best reply  if we have: 

 (30) 

  

The following analysis is quite similar to that of subsection 3.3, replacing  

by  (compare (22) and (30)). Thus, we present the results only briefly. For 

 and   the mixed strategy combination  is the only 

equilibrium point of the reduced game.  Therefore, the limit solution of the game 

is . 

For  and    there are three equilibrium points ,  and 

. The -equilibrium point payoff-dominates the -

equilibrium point, if (compare with (23)): 

 (3 ) 
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 implies: 

 (32) 
  

Thus (31) always holds if  or it holds if  is negative but with a small abso-

lute value. In these cases,  is the limit solution of the game. 

If (31) does not hold, a risk-dominance comparison between the two -extreme 

equilibrium points becomes necessary. Similar to subsection 3.3 it follows: 

� If  holds, the equilibrium point  risk-

dominates the equilibrium point . We obtain  

as the limit solution of the game. 
� If  holds, the risk-dominance comparison is the very opposite 

and we obtain  as the limit solution of the game. 
� If  holds, the mixed equilibrium point  is ob-

tained as the solution of the reduced game. The limit solution of the whole 

game is . 
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4. Normalization of the Indecomposable 
and Irreducible Games 

In section 3 we characterized the conditions under which one of the types or the 

receiver form a cell and analyzed these cases. If none of the three players forms a 

cell by himself  the signaling game is indecomposable and irreducible. This situa-

tion allows the following steps of normalization: 

1. Call the “inside” choice of the two types  and the “outside” choice . 

2. Call the receiver player 3. 

3. A type receives nothing if he is inactive. 

4. Subtract the payoff vector after a -choice of each type from those three 

payoff vectors which can be reached if this type is the active one. By this 

subtraction the new payoff vectors of the normalized game are obtained. 

5. For each type compute the difference of the receiver’s payoffs achieved af-

ter his two responses, given that this type has become active and has cho-

sen . Multiply these differences with the respective probability of occur-

rence of the two types. Call that type player 1 who induces the greater ab-

solute value of these “weighted differences”. If both types induce the same 

weighted difference, call by random some type player 1. Call the remaining 

type player 2. 
6. Call player 1’s probability of becoming active . 

7. Call that response of player 3  that yields the smaller payoff to him if play-

er 1 becomes active and chooses . Call the other response . Indiffer-

ence is not possible because the games considered in this section are in-

decomposable. 

The extensive form of the normalized game is shown in figure 9. The following 

properties of the payoff structure result from the process of normalization de-

scribed above and from the fact that in this section only indecomposable and ir-

reducible games are considered.  

 (33) 
  

 (34) 
  

 (35) 
  

 (36) 
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 (37) 

  
 

 

 

 

 

 

 

 

 

 

 

Figure 9: The extensive form of the normalized games.  

 

In the following the probabilities that player 1 and player 2 choose  are called 

 and , respectively.  is the probability that player 3 chooses . All three 

players have just two pure strategies, hence, player i’s mixed strategy is com-

pletely described by . The conditions that a player becomes indifferent between 

his two choices are calculated now. 

INDIFFERENCE POINT OF PLAYER 1. The pure strategies  and  yield the 

same (expected) payoffs for player 1 if the following holds: 

 (38) 
  
This is equivalent to: 

 (39) 
  
From (33) we can see that  holds. If , then  is a best reply of 

player 1 if . If , then  is a best reply of player 1 if . The next 

results are obtained in a similar way. 
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INDIFFERENCE POINT OF PLAYER 2.  

 (40) 

  
(34) ensures . A best reply of player 2 is  if  and  hold 

simultaneously or if  and  hold simultaneously. 

INDIFFERENCE LINE OF PLAYER 3. The pure strategies  and  yield the same 

(expected) payoffs for player 3 if the following holds: 

 (41) 
  
This is equivalent to:  

 (42) 

  
Since (35), (36) and (37) hold, it follows that . If then  is a 

best reply of player 3, if then  is a best reply of player 3. 

We have to mention that the indifference points for players 1 and 2 and the indif-

ference line for player 3 given (39), (40) and (42) matter not only for the unper-

turbed game, but represent also the exact values of the perturbed game. We show 

this only for player 1. In the perturbed game his two -extreme strategies yield 

the same expected payoffs if: 

 (43) 
  
Or, equivalently: 

 (44) 
  
Since , equation (44)  is equivalent to  (see (38) and (39)). 

In this work we are only concerned with the generic cases of signaling games. The 

indecomposable and irreducible games are nongeneric if  and/or if . 

Their solutions have also been calculated by the author (using if necessary the 

logarithmic tracing procedure and numerical methods), but their presentation 

will go beyond the scope of this work. 
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5. Solution of the Generic Indecompos-
able and Irreducible Games 

In this section we solve the indecomposable and irreducible games with the addi-

tional properties  and . Let  for  be player i’s best reply to 

a  choice of player 3. We have to distinguish eight cases which are analyzed in 

the following subsections: 

Subsection 5.1.: Case  

Subsection 5.2.: Case  

Subsection 5.3.: Case  

Subsection 5.4.: Case  

Subsection 5.5.: Case  

Subsection 5.6.: Case  

Subsection 5.7.: Case  

Subsection 5.8.: Case . 

Throughout this section we always assume that in the uniformly perturbed game 

the trembling hand parameter  is sufficiently small, i.e.:  

 (45) 
  
 

5.1. Case  
The best-reply correspondences of players 1 and 2 in the case considered are giv-

en in figure 10. In the following cases we omit the corresponding figures. They 

can be obtained easily by interchanging  and   for player i if   

holds instead of , and by interchanging the positions of the markings 

of a and b if  holds instead of  . 
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Figure 10: Best-reply correspondences of players 1 and 2 in 
dependence of player 3’s strategy in case 5.1.  

 

The best-reply correspondence of player 3 is shown in figure 11. Such figures are 

presented for all eight cases considered in this section. The horizontal axis of fig-

ure 10 refers to player 1’s mixed strategy  and the vertical axis to player 2’s 

mixed strategy . The inner square corresponds to the perturbed game whereas 

the outer square to the unperturbed game. The straight line  shows the 

set of points at which player 3 is indifferent between his two choices (see (42)). 

Points above this line have the property that  is player 3’s unique best reply. 

The same is true for  if we consider points below the indifference line. This fol-

lows from the discussion from (42) in section 4 and is true both for the unper-

turbed and the perturbed game. 

In figure 11 and the corresponding figures of the remaining subsections we also 

mark equilibrium points or connected sets of equilibrium points by the symbol □
i
  

if we deal with the unperturbed game and by the symbol ■
i 
 if we deal with the uni-

formly -perturbed game. The exact mathematical description of an equilibrium point 

 or of a set of equilibrium points  is given in the text.  or  correspond to □
i
 in 

the following figures. Likewise,  or  correspond to ■
i
. The index i is the number 

of different equilibrium points or sets of equilibrium points starting with  in case 

5.1. It should be clear that equilibrium points in the lower left or the upper right corner 

of figures correspond to pooling equilbria because both types choose the same signal, 

whereas equilibrium points in the upper left or lower right corner are so-called sepa-
rating equilibria. 

   

 

 

Best replies of player 2:                                                                                           

Best replies of player 1:                                                                         

0                                                                            b                                          1 

a
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Figure 11: Best-reply correspondences of player 3 in de-
pendence of players’ 1 and 2 strategies and equilibrium 
points in case 5.1.  

 

As one can easily check with the help of figures 10 and 11, in case 5.1 the unper-

turbed game has the set , indicated by □
1
 in figure 11, as equilibrium points and 

no others: 

 (46) 
  
But each perturbed game has for sufficiently small  (see condition (45)) a 

unique equilibrium point, as indicated by ■
1
 in figure 11: 

 (47) 
  
Therefore, in case 5.1 the limit solution of the game is . Of course, 

. 
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5.2. Case  

Figure 12 illustrates the case considered in this subsection. The unperturbed 

game has a unique equilibrium point  which is therefore the solu-

tion of the game. The unique equilibrium point of the perturbed game is: 

 (48) 
  
Clearly, . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Best-reply correspondences of player 3 in de-
pendence of players’ 1 and 2 strategies and equilibrium 
points in case 5.2.  

 

5.3. Case  
The equilibrium points in this case are given as follows (see figure 13): 

 (49) 
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 (50) 
  

 (51) 
  

 (52) 
  

 (53) 
  

 (54) 
  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Best-reply correspondences of player 3 in de-
pendence of players’ 1 and 2 strategies and equilibrium 
points in case 5.3.  

Since  is not the solution of a primitive formation, the first candidate set of the 

perturbed game consists of  and . There is no payoff-dominance between the-

se two equilibrium points because player 1 gets positive payoffs at  and zero 

payoffs at , whereas player 2 gets positive payoffs at  and zero payoffs at . 

The linear tracing procedure (see subsection 2.3) has to decide which equilibrium 

point risk-dominates the other one (see subsection 2.4). 

To analyze the path of the linear tracing procedure we start with the determina-

tion of the bicentric priors. In the following pure strategy symbols with an addi-
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tional lower index “ ” refer to -extreme strategies of the perturbed game. The 

bicentric priors of the first two players can be calculated easily with the help of 

the appropriate modification of figure 10. We obtain: 

Bicentric prior of player 1: 

 (55) 
  
Bicentric prior of player 2: 

 (56) 

  
To compute the bicentric prior of the third player figure 14 is useful. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Visualization of player 3’s bicentric prior in case 
5.3.  

Since player 3 assumes that the other player choose either  or , his expec-

tations are formed along the dashed line in figure 14. x is that part of the whole 

dashed line at which  is his best reply, y is the rest. Thus his bicentric prior is 

given by: 
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 (57) 
  
Simple facts of geometry yield: 

 (58) 

  
Furthermore: 

 (59) 
  
We define  as follows: 

 (60) 

  
(57), (58), (59) and (60) together yield the following result. 

Bicentric prior of player 3: 

 (61) 

  
The “hat” variables ,  and , defined in (55), (56) and (60) converge to a, b and 

c, respectively, if  goes to zero. Therefore,  and  hold for sufficiently 

small . Let  be the i-incomplete bicentric prior resulting from (55), (56) and 

(61). We now analyze what are the players’ best replies to the bicentric priors, i.e. 

the starting point of the linear tracing procedure. Of course, the best replies of the 

first two players only depend on player 3’s bicentric prior. 

Best reply to  for player 1: 

  

  

Best reply to  for player 2: 

  

  

Best reply to  for player 3: 
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Now we examine which combinations of best replies to the bicentric priors are 

impossible due to parameter restrictions: 

i. If  holds then  is impossible because . 

ii. If  holds then  is impossible. The first inequality 

implies , but this is a contradiction to  because 

 and  for sufficiently small .  

iii. By a similar argument as above we can conclude that  and 

 cannot hold simultaneously. 

Next, we want to show the implications of some relations between a, b and c for 

their corresponding “hat” variables. From (60) it is clear that  holds for each 

. Thus we can conclude: 

 (62) 
  

 (63) 
  
Now assume that  holds. With the help of (55) and (56) one can see 

that this equation is equivalent to the following one: 

 (64) 
  
Since  holds we can conclude: 

 (65) 
  
After these preparations we can analyze the best replies to the bicentric priors for 

the four possible relations among a, b and c. The vector of best replies is denoted 

by . We obtain: 

 (66) 
  

 (67) 
  

 (68) 
  

 (69) 
  
No problems arise in the situations given by (66) and (69) since in both cases the 

resulting  is one of the two -extreme equilibrium points in the first candidate 

set of the perturbed game and, therefore, no player has an incentive to deviate 
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from this strategy combination along the path of the linear tracing procedure. 

Thus, in the situation described in (66) the limit solution of the game is 

  and in the situation described in (69) the limit solution is 

. 

The best replies to the bicentric priors in the situations described by (67) and 

(68) do not yield an equilibrium point. But in (67) the analysis is still simple: 

Player 2 and player 3 have no incentive to deviate from their initial strategies 

since they are not only best replies to the bicentric priors but also to . This is 

not true for player 1, in consequence he must change his strategy if t, the tracing 

parameter, becomes sufficiently large.  After he has changed his strategy from 

 to  the -extreme equilibrium point  is reached and no 

further change of strategies will occur along the remaining path of the tracing 

procedure. Thus, the limit solution of the game is  . 

The situation described in (68) is more difficult since here two players’ (player 2 

and player 3) best replies to the bicentric priors are not best replies to . To ana-

lyze the path of the linear tracing procedure it must be determined who is the first 

to change his strategy. For this reason we calculate the destabilization points (see 

subsection 2.3) of players 2 and 3. We show that for sufficiently small  player 2 is 

the first player to shift to his other strategy. 

Player 2’s destabilization point  must satisfy the following equation: 

 (70) 

  
Thus  is given as follows: 

 (7 ) 

  
Since  holds (see (63) and (68)), the numerator is positive, and 

since  holds, the numerator is smaller than the denominator. Therefore, 

 holds for sufficiently small . We obtain: 

 (72 ) 

  
Player 2’s destabilization point  can be computed with the help of  (42): 

 (73) 
  
Simple computations yield: 
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 (74) 

  
(68) ensures that the numerator is positive for sufficiently small  and  en-

sures that the numerator is smaller than the denominator. Hence,  

holds. However, 

 (75) 
  
From (72) we know that  is positive but smaller than b for sufficiently small . 

Since  we can conclude that  holds for sufficiently small . This means 

that player 2 is the first player to shift his strategy. But after his shift (from  to 

) the equilibrium point  is reached and for t with  no further 

strategy changes occur. We have shown that in the situation described by (68) 

the limit solution is . 

Now our results for case 5.3 can be summarized. Since  is the limit solution in 

the situations described by (66) and (67), and  is the limit solution in the situa-

tions described by (68) and (69), we can claim:  is the limit solution if 

 holds. Otherwise  is the limit solution. 

 

5.4. Case  
Figure 15 indicates the equilibrium points in case 5.4. 
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Figure 15: Best-reply correspondences of player 3 in de-
pendence of players’ 1 and 2 strategies and equilibrium 
points in case 5.4.  

 

The formal equivalents to the square symbols in figure 15 for ,  and  are 

still given by (47), (48) and (54), respectively. However,  is not identical with 

 given by (53). Instead, we have: 

 (76) 
  
Furthermore: 

 (77) 
  

 (78) 
  
The equilibrium points  and  of the perturbed game are not solutions of prim-
itive formations. Consequently the first candidate set contains only . For this 

reason the limit solution of the game is . 
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5.5. Case  
Figure 16 illustrates the case considered now. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Best-reply correspondences of player 3 in de-
pendence of players’ 1 and 2 strategies and equilibrium 
points in case 5.5. 

, ,  and  are still given by (46), (47), (48) and (54), respectively. Fur-

thermore: 

 (79) 
  
Each perturbed game has three equilibrium points, but only  is the solution of a 

primitive formation. For this reason, the limit solution of the case 5.5 is 

. 
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5.6. Case  
This case is illustrated by figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Best-reply correspondences of player 3 in de-
pendence of players’ 1 and 2 strategies and equilibrium 
points in case 5.6.  

 

The set  is given as follows: 

 (80) 
  
However, the perturbed game has the unique equilibrium point  , given by 

(54). Hence, the limit solution in this case is: 

 (81) 
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5.7. Case  
Figure 18 indicates the equilibrium points in case 5.7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Best-reply correspondences of player 3 in de-
pendence of players’ 1 and 2 strategies and equilibrium 
points in case 5.7.  

 

, and the other equilibrium points  , , , ,  and  are 

given by (48) to (52). Since  is not the solution of a primitive formation of the 

perturbed game, the first candidate set contains only  and . Obviously, there 

is payoff-dominance relationship between these two equilibrium points.  The 

risk-dominance by means of the linear tracing procedure has to resolve which of 

the equilibrium points is the solution of the game. 

Notice that case 5.7 is similar to case 5.3 except that  holds instead of . 

The bicentric priors are equivalent to those given by (55), (56) and (61). Moreo-

ver, the best replies to the bicentric priors are exactly the same as in the analysis of 

case 5.3, and we omit the repetition of the formulas. However, in the case at hand 

we can exclude combinations of best replies to the bicentric priors different from 
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those in case 5.3.  The “hat” variables ,  and  are defined as in (55), (56) and 

(60). 

i. If  holds then  is impossible because . 

ii. If  holds then  is impossible. The first inequality 

implies , but this is a contradiction to  because  

and  hold for sufficiently small .  

iii. By a similar argument as above we can conclude that  and 

 cannot hold simultaneously. The first inequality implies 

, but this is a contradiction to  because  and 

 hold for sufficiently small .  

Note that the implications for the “hat” variables given by (62), (63) and (65) 

still matter. Now we can list the possible relations between a, b and c and the re-

sulting vectors of best replies to the bicentric priors, still denoted by . 

 (82) 
  

 (83) 
  

 (84) 
  

 (85) 
  
In the situation described by (82) the best replies to the bicentric priors establish 

the equilibrium point , and no player has an incentive to shift his strategy along 

the path of the tracing procedure.  is the limit solution of the game. 

Similarly,  is the limit solution in the situation given by (85). 

In the situation described by (83) player 2 is the only player whose initial strate-

gy is not a best reply to . Hence, if the tracing parameter t becomes sufficiently 

large player 2 will shift to his other -extreme strategy . Then the equilibrium 

point  is reached and no further strategy changes will occur in the remaining 

course of the linear tracing procedure. Therefore, the limit solution in this situa-

tion is . 

The situation described by (84) is similar to that of (68). Now player 1’s and 

player 3’s best replies to the bicentric priors are not best replies to . We have to 

compute their destabilization points  and  to decide who is the first player to 
shift to his other strategy.  

The computation of player 1’s destabilization point  is analogously to that of  in 

(71) for the situation of (68). We obtain:  
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 (86) 

  
Since  (see (62) and (84)) the numerator is positive and since 

 the numerator is smaller than the denominator. Therefore,  

holds for sufficiently small . It follows: 

 (87 ) 

  
Player 3’s destabilization point  can be obtained by interchanging the ’s by 

’s in formulas (73) and (74) because now player 1 and player 2 both 

choose  in  instead of  as in the situation of (68). Simple computations 

yield: 

 (88) 

  
In view of (65), (84) and  it is clear that  holds for sufficiently 

small . However, different to (75) we obtain now: 

 (89) 

  
From (84) it follows that  and that  holds. Un-

fortunately we cannot identify one player who is always the first to shift his strat-

egy. For example, let  (satisfying the conditions of (84)). 

We obtain . Thus, for these parameter values 

player 3 is the first to shift his strategy. But for , satisfy-

ing also the conditions of (84), we obtain , 

and player 1 is the first to shift his strategy. Hence, we have to look closer at the 

parameters. 

The condition that   yields the following relation among the 

parameters a, b and c: 

 (90) 

  
If (90) holds with “ ” instead of “=”, we obtain  and, there-

fore,  for sufficiently small . Otherwise, if (90) holds with “ ” instead of 

“=”, we obtain  and, therefore,  for sufficiently small . 

But now consider the case that (90) holds strictly. To answer the question who is 
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the first to change his strategy we look directly at  and  as given by (86) and 

(88) and substitute the “hat” variables by their definitions in (55), (56) and (60). 

Some tedious definitions show that  holds for sufficiently small  if and on-

ly if: 

 (91) 

  
Obviously, the numerator of the right-hand side of (90) is greater than that of 

(89) and the denominator of the right-hand side of (90) is smaller than that of 

(89). Because all numerators and denominators are positive for sufficiently small 

 it follows that (89) implies (90). Hence, if (89) holds, player 1 is the first player 

to shift to his other -extreme strategy. 

Now we must consider the consequences of a strategy shift of player 1 or player 3 

along the path of the linear tracing procedure in the situation described by (84). 

If player 1 is the first to shift his strategy the strategy combination 

, i.e. the equilibrium point , is reached and no further strategy changes occur 

afterwards in the remaining course of the linear tracing procedure.  

If player 3 is the first to shift his strategy the strategy combination 

 is reached. This is not an equilibrium point of the perturbed game, but now 

player 2 is the only player whose momentary strategy is not a best reply to the 

other players’ momentary strategies. So player 2 is the next one who changes his 

strategy. Then the strategy combination , i.e. the equilibrium point , 

is reached und is sustained until the end of the tracing procedure. 

The analysis of the situation given by (84) can be summarized as follows. The 

equilibrium point  is the limit solution of the game if the following 

holds: 

 (92) 

  
If (92) does not hold,  is the limit solution. 

Connecting this result for (84) with those obtained for (82), (83) and (85) we 

can claim: 

� If either  holds or if (84) holds but (92) does not hold, 

 is the limit solution in case 5.7. 

� Otherwise,  is the limit solution of the game in case 5.7. 
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5.8. Case  
The final generic case is illustrated by figure 19. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Best-reply correspondences of player 3 in de-
pendence of players’ 1 and 2 strategies and equilibrium 
points in case 5.8.  

 

The equilibrium points  and  are explained by (77) and (78).  is given as 

follows: 

 (93) 
  
However  has no corresponding equilibrium points in the perturbed game. 

Hence,  is the unique equilibrium point of the perturbed game and  

is the limit solution of the game. 
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6. Overview of the Results 
In this section we present an overview of the limit solutions for all generic games 

of the class of signaling games investigated. The solutions were derived in sec-

tions 3 and 5. If someone is interested in a special game this overview can be used 

to pick up quickly its solution. 

The first step to find the solution for a particular game is to check whether some 

strategy sets are semiduplicate classes or whether inferior choices exist. If this is 

the case the particular player forms an elementary cell and the game is decom-

posable and reducible (part A of this overview reports the results of section 3). 

Part B presents the results of the indecomposable and irreducible games calcu-

lated in section 5. 

 

Part A: Solutions of Decomposable and Reducible 
Games 
 

A1: At least the receiver forms an elementary cell.  

After fixing the receiver, both types eventually form cells. When they are fixed, 

the solution is obtained. 

The following case distinctions of part A are concerned with situations where the 

receiver does not initially form a cell but at least one type does. 

A2: Both types form cells.  

After fixing the two types, the conditional probabilities that the decision node af-

ter player 1’s “inside” choice is reached are given in table 1. With the help of this 

table the receiver can easily compute his best reply and the solution is obtained. 

For convenience we repeat table 1 here.  
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Probability for player 3’s left 

node after fixing the types 

Player 2 

Inferior choice 

“inside” 
Inferior choice 

“outside” 
Semiduplicate 

Class 

Player 1 

Inferior 

choice 

“inside” 
   

Inferior 

choice 

“outside” 
   

Semi-

duplicate 

class 

   

 

Table 1: Conditional probabilities that the node after player 
1’s “inside” choice is reached, given that the receiver ob-
served an “inside” choice. 

The remaining case distinctions of part A are concerned with situations where 

only one type forms a cell. We call him player 1. 

A3: Player 1 has the inferior choice “outside” 

Subcases Solution  

,  (1,1,0) 

,  (1,0,0) 

,  (1,c,b) 

, ,  (1,1,1) 

, , , b+c  (1,1,1) 

, , , b+c  (1,0,0) 

 
Table 2: Player 1 has the inferior choice “outside”. 
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A4: Player 1 has the inferior choice “inside” 

Subcases Solution  

 (0,1,1) 

,  (0,0,b) 

,  (0,0,1) 

 
Table 3: Player 1 has the inferior choice “inside”. 

 

A5: Player 1’s choices are semiduplicates 

Subcases Solution  

,  (1/2,1,0) 

,  (1,/2,0,0) 

,  (1/2,c/2,b) 

, ,  (1/2,1,1) 

, , , b+  (1/2,1,1) 

, , , b+  (1/2,c/2,b) 

, , , b+  (1/2,0,0) 

 
Table 4: Player 1’s choices are semiduplicates. 
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Part B: Solutions of Indecomposable and Irreducible 
Games 
 

Cases Solution  

B1:  (0,0,0) 

B2:  (1/c,1,a) 

B3: :   

     Subcase:  (1,0,0) 

     Subcase:  (0,1,1) 

B4:  (1,1,0) 

B5:  (0,0,0) 

B6: :  (0,0,b) 

B7: :   

     Subcase:  (1,0,0) 

     Subcase:   

 
(1,0,0) 

     Subcase:   

 
(0,1,1) 

     Subcase:  (0,1,1) 

B8:  (1,1,0) 

 
Table 5: Solutions of indecomposable and irreducible games. 
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Summary 
 
In this paper we apply the Harsanyi-Selten solution to a class of simple signal-

ing games. Somebody who is not familiar with the theory of Harsanyi and 

Selten can use this paper as an introduction and can observe different con-

cepts and procedures at work. The overview of the results allows for easy ap-

plication to economic or other models and for comparisons to the outcomes of 

alternative equilibrium selection criteria.  
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