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Data-Driven Planning of Reliable Itineraries in
Multi-Modal Transit Networks

Michael Redmond · Ann Melissa
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Abstract Multi-modal travel itineraries are based on traversing multiple legs
using more than one mode of transportation. The more combinations of legs
and modes, the more challenging it is for a traveler to identify a reliable
itinerary. Transportation providers collect data that can increase transparency
for reliable travel planning. However, this data has not been fully exploited yet,
although it will likely form an important piece of future traveler information
systems. Our paper takes an important step in this direction by analyzing and
aggregating data from the operation of scheduled and unscheduled modes to
create a reliability measure for multi-modal travel. We use a network search
algorithm to evaluate itineraries that combine schedule-based long-distance
travel with airlines with last-mile and first-mile drive times to efficiently iden-
tify the one with the highest reliability given a start time and travel time
budget. Our network search considers multiple origin and destination airports
which impacts the first and last mile as well as the flight options. We use
extensive historical datasets to create reliable itineraries and compare these
with deterministic shortest travel time itineraries. We investigate the amount
of data that is required to create reliable multi-modal travel itineraries. Ad-
ditionally, we highlight the benefits and costs of reliable travel itineraries and
analyze their structure.
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1 Introduction

Multi-modal travel itineraries are based on traversing multiple legs using more
than one mode of transportation. The more combinations of legs and modes,
the more challenging it is for a traveler to choose an itinerary. Tools for multi-
modal travel planning have gained popularity in recent years due to travelers’
demand for integrated, door-to-door travel options. This demand is reflected
in travel websites like Rome2Rio and Coord, which offer routing interfaces
specifically designed for travelers to plan multi-modal itineraries (20, 22). Mu-
nicipalities are also seeing multi-modal travel planning as a way to combat
city congestion and improve access to public transit. Recently, the U.S. De-
partment of Transportation released a report that outlines the importance of
considering shared mobility services in the planning of multi-modal itineraries
(21) to not only reduce congestion and improve access to public transit, but
also for sustainability reasons.

Many transportation providers collect data that can increase transparency
for reliable travel planning. However, this data has not been fully exploited yet,
even though it will likely form an important piece of future traveler information
systems. Our paper takes an important step in this direction by analyzing and
aggregating data from the operation of scheduled and unscheduled modes to
create a reliability measure for multi-modal travel. As investments in multi-
modal travel planning expand, it is important to develop technology that helps
travelers choose between the many possible options.

Many empirical studies in recent years have shown that travelers value re-
liability of travel time about as much as short travel times (16, 19, 8, 12). Cur-
rently, travel websites do not consider reliability measures in the development
of multi-modal itineraries, but focus primarily on time and cost. Hence, there
exists a gap between the information available to travelers in their decision-
making process and what these travelers actually value in the choice of an
itinerary. So far, travelers can only consider reliability information on the
individual legs of a planned itinerary. For instance, the major airlines give his-
torical data for on-time statistics for individual flights in their itinerary details
and report this information using data only from the past month. However,
this data can often be incomplete and may not be the best predictor for the
planned travel. In addition, it does not allow travelers with multiple legs to
see the possibility of a missed connection or propagated delays. To plan for the
first and last mile, many travelers simply open their favorite navigation app to
look at the current predicted travel time from an airport to their final origin
or destination. However, this time can vary widely depending on the time of
day and day of week, which can affect the success of the entire multi-modal
itinerary.
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This research seeks to develop a stochastic optimization model for finding
the most reliable multi-modal itinerary given a start time and travel time
budget. Since the number of combinations of different modes already makes the
problem quite complex, the stochastic nature of multi-modal travel itineraries
has been largely left out of itinerary planning. In our reliability model, we
combine both schedule-based travel modes (airline network) and unscheduled
travel modes (drive times reflecting ride-sharing or taxi transportation). We
use a network search algorithm to evaluate itineraries. Our network search
considers multiple origin and destination airports which impacts the first and
last mile as well as the flight options. We consider the stochastic nature of
travel in our model, with travel time distributions built using both discrete
and continuous distributions. The main contributions of our research include:

– The development of a reliability measure for multi-modal itineraries,
– The use of historical data to form travel time distributions for different

legs and modes of the itinerary,
– An efficient network search algorithm to identify the most reliable multi-

modal itinerary,
– An analysis of the structure of reliable itineraries in different stages of

the multi-modal itinerary compared to deterministic and other alternative
approaches,

– An analysis of features that tend to impact the reliability of itineraries (e.g.
times of day, month of the year, airports included).

In Section 2, we give an overview of related work on travel planning in
multi-modal travel networks. Then, in Section 3, we present a formal model
of our multi-modal travel network and explain how our reliability measure is
defined and calculated across the stages of a multi-modal itinerary. Section 4
lays out the network search algorithm that finds the most reliability itinerary
(MRI) and presents techniques that we use to reduce the computational run-
time of the algorithm. Section 5 shows how we utilize extensive sets of real
historical transportation data to build the probability distributions for the legs
in the flight and driving networks. Section 6 analyzes how varying parameters
across multiple origin-destination (OD) pairs affect the reliability throughout
multi-modal travel itineraries. Section 7 summarizes the main takeaways of
the paper and provides recommendations of how our work can be useful for
both travelers and transportation providers.

2 Related Work

This section contains a summary of related work. First, we will address the
relevance of travel time distributions for reliable, a priori travel planning. Then,
related work on multi-modal network modeling is summarized, which has been
discussed in the context of mobility as a service (MaaS) recently. One way to
optimize for the most reliable multi-modal itinerary is the resource-constrained
shortest path problem (RCSPP). Our work builds upon these concepts and
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extends reliability across transfers through conditional probability and success
of transfers to come up with the most reliable itineraries for travelers.

To consider reliability in a priori travel planning, we need not only expected
travel times, but the ability to compute the probability that certain combina-
tions of legs in an itinerary will yield successful connections. Several methods
exist for determining delay distributions for different modes of transportation.
(24) examine departure delay distributions through a statistical approach that
takes into account seasonal trends, the daily propagation patterns and random
residuals. They demonstrate good fit of the distribution and strong predictive
performance. However, they only examine departure delays of single flights
and not the entire itinerary. For city logistics, (11) model travel time vari-
ability along urban road networks using approximations of Burr XII Type 3
distributions based on realized standardized path durations. They use these
time-dependent travel time distributions to simulate routes for arrivals at cus-
tomers’ locations. We expand on this approach by using Google’s historical
database of travel times to form travel time distributions for routes in urban
road networks.

It is a particular challenge to find reliability across different modes given
that there may exist multiple connections or a transfer from a scheduled mode
of transportation to an unscheduled mode, such as a car trip to the airport.
While not focused on reliability, several areas of research are looking at build-
ing these multi-modal itineraries as a service to travelers. For example, (28)
develop a framework for MaaS and show the sustainability and need for dif-
ferent modes of travel across spatial and temporal efficiency. (26) demonstrate
how they use their trip planner algorithm to offer alternatives to travelers
based on different criteria or multi-criteria optimization. Their algorithm gives
more varied solutions than existing trip-planning services from Bing or Google,
and on average has better distribution of arrival times and less transfers for
multi-modal trip planning. While our work can be expanded to fit into a multi-
criteria version, the reliability measure we propose is focusing on the reliability
of the planned multi-modal itinerary.

Many works look to establish multi-criteria optimization within the con-
text of multi-modal travel planning. (3) provide exemplary work that surveys
route-planning methods across various transportation networks. They propose
building a graph for one transportation mode and then combine it with other
transportation modes through “link arcs” to allow for multi-modal transfers.
They then provide categories for solving this problem including cost combi-
nation, resource-constrained shortest paths and multi-criteria optimization.
(2) look into modeling multi-modal travel as an optimization problem with a
single linear utility function that considers not only shortest travel time, but
other objectives that go into their TRANSIT optimization algorithm. Mean-
while, various techniques improve upon multi-modal network algorithms to
make them tractable, including (9), who use techniques such as contraction
hierarchies to reduce the size of the combined graphs significantly. Finally,
(7) use multi-criteria optimization to create multi-modal travel itineraries and
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develop a set of Pareto-optimal solutions, ultimately applying fuzzy logic to
give a score to each of those itineraries in the set.

To create reliable itineraries in a travel network, the problem can be mod-
eled as a RCSPP. (6) solve the Maximum Probability Shortest Path Problem
by maximizing the probability that all resource constraints are satisfied given
the cost of the path does not exceed a specified threshold. They assume that
all arc resources are independent and normally distributed. (27) examine the
RCSPP with stochastic link travel times by modeling it as a 0-1 integer pro-
gramming model. They use Lagrangian relaxation methods to find the a priori
optimal path with the least expected travel time. (1) solve a variation of the
RCSPP called the Reliable h-Path Problem to find paths that minimize cost
given a reliability threshold. The key differentiation between our problem and
the RCSPP in the work above is that we have conditional probabilities on
the edges of our graph, which significantly complicates the modeling and the
network search, but makes the problem more realistic.

(4) present a dynamic programming version of time-dependent reliable
itineraries in a public transit network. They use past timetables to check
how many times the itinerary finished before a certain time to determine
that itinerary’s success rate. Our work uses this concept of utilizing historic
timetables and a time budget for an itinerary and builds upon it with a net-
work search algorithm dedicated to finding the most reliable itineraries. Our
conditional model of reliability is inspired by the modeling of reliable train
connections by (18). Similar to our problem, for each departure and arrival
times for a connection, they calculate distributions of arrival and departure
times and then update the delays in the network through delay propagation.
We extend this problem to look at multiple connections while still maintaining
the conditional probability in our reliability calculations through the network.
We start from results presented in (23), our previous paper, where we devel-
oped a network search algorithm for a uni-modal travel network considering
historical flight data and conditional probability along edges to find the most
reliable uni-modal flight itinerary. The additional challenges tackled in the
present paper are the combination of multiple modes, the creation of distribu-
tions for scheduled and unscheduled travel options as well as the sheer amount
of operational data arising in multi-modal travel networks.

3 Model

In this paper, we extend the flight network model presented in (23) to include
the first and last mile for door-to-door, multi-modal travel planning. This is
done through the combination of continuous distributions derived from histor-
ical drive times with discretized empirical distributions created from historical
flight data. We first describe the notation required for our multi-modal travel
network, outline the foundation for computing our reliability metric, and then
describe how the distributions for driving and flight itineraries are combined.
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3.1 Multi-modal Network Model

We will begin with defining flight and driving networks separately and then
combine them as a multi-modal travel network. We represent the flight network
by the graph GF = (A, EF ). The set of nodes, A, represents the airports
in the network. The set EF contains all the edges modeling the flights that
connect the airports over a two-day span to allow for evening departures. Each
edge eF ∈ EF is characterized by a tuple such that eF = (l, a1, a2, τ1, τ2). In
particular, a scheduled flight is associated with a departure airport a1 ∈ A,
as well as a scheduled departure time τ1, scheduled arrival airport a2 ∈ A, a
scheduled arrival time τ2, and an airline l ∈ L.

The drive to and from the airport is represented by the driving graph GD

= (C, ED). The set of nodes, C, represents the city centers considered as origins
and/or destinations in the network. Ac is the set of the five closest airports to
a city node c ∈ C, and each airport is also in the above flight network, such
that Ac ∈ A ∀c ∈ C. The drive time between cities and airports (and vice-
versa) is time-dependent. Similar to many stochastic time-dependent vehicle
routing problems (STDVRP) such as (10), we use time blocks to distinguish
the stochastic travel time distributions on an edge. The set of time blocks is
[1, ..., Θ], where Θ is the number of time blocks. The edges of the driving graph
can be defined by the tuple eD1 = (c, a1, θ) (for the drive to the airport) and
eD2 = (a2, c, θ) (for the drive from the airport to the destination), where a1 is
the airport associated with the first-mile (and a1 ∈ Ac), a2 is the destination
airport for a last-mile journey (and a2 ∈ Ac), and θ ∈ [1, ..., Θ] is the time
block during which travel begins.

Thus, our multi-modal network model is made up of graph G = GF ∪GD

with nodes A = A ∪ C and edges E = EF ∪ ED, where ED = ED1 ∪ ED2.
Hereafter, we will refer to a set of connecting driving and flying legs from

the traveler’s origin to final destination as a complete itinerary (CI). A partial
itinerary (PI) will be defined as a set of driving and potentially flying legs
from the origin city to an airport on the way to the destination. Both CIs
and PIs can be comprised of several legs, and each leg will be represented by
edges e as described above.

We want to identify the reliability of a CI from a specified starting loca-
tion s to a specified destination location d where s, d ∈ C. The CI is further
restricted to begin at or after time τS with a travel time budget of B. With
these assumptions, the latest allowed arrival time at the destination d will be
τs+B. We will use λi to represent the sequence of edges for an itinerary i ∈ I,
where I is the set of all possible PIs and CIs.

Each itinerary, i, whether complete or partial, is defined by a label that
contains several pieces of information about that itinerary and is defined by
the tuple (λi, reli, πi, Zi):

– λi: Sequence of edges for itinerary i, where there are m flying edges in the
itinerary embedded by two driving edges eD1 and eD2

– reli: Probability of itinerary i reaching destination by τs +B (reliability)
– πi: Scheduled travel time of itinerary i
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– Zi: Conditional distribution of tail edge of itinerary i

The scheduled travel time, πi, reflects how much time is between τs and the
scheduled arrival of the current tail flight em + median drive time from the
final airport to the destination if it is a CI. The reliability reli of PI i reflects
the probability of making all required connections in the PI through edge em.
If i is a CI, the reliability reli represents the probability that this itinerary will
lead to an arrival at the destination by τs+B. More precisely, for a CI, reli is
the probability that the traveler drives and arrives to the airport sufficiently
before the departure time of the first flight, none of the flights of the itinerary
are canceled, the traveler makes all of the connections and drives to the final
destination d, arriving before τs + B. The calculation of the reliability for
itineraries will be explained in detail in Sections 3.2.1–3.2.3.

For our model, we take the following assumptions. We assume travelers on
multi-flight itineraries only include flights within a partnering airline group.
We do not assume flights wait for late drivers/travelers. Drive times are inde-
pendent of the delays along the flight edges. Arrival/departure times of differ-
ent flights are independent. In other words, because one flight is late, this does
not tell us anything about the likelihood of other flights being late. Then, we
can compute our reliability measure as described below. The required input
data we need to create discrete probability distributions of departures and
arrivals for all flights as well as for driving times is discussed in Sections 5.1
and 5.2, respectively.

In the label for the itinerary i, we designate the distribution for the tail
edge of the itinerary as Zi. We further define this distribution and differentiate
between driving and flying edges. We will use Y for the random variables
representing the travel time for the driving legs and X for the flight legs. For
simplicity, we will drop the use of the e in defining the probability distributions:

– P (Y D ≤ t): probability that departure of driving edge eD leads to arrival
at first flight or destination by time t,

– P (XF
dep = t): probability that departure of flight eF occurs at time t,

– P (XF
arr = t): probability that arrival of flight eF occurs at time t,

– P (XF
arr = t|XF

dep = t′): probability that arrival of flight eF occurs at time
t when it departs at t′.

For each scheduled flight leg e, we assume we also know the following:

– min(XF
arr) : the earliest possible arrival for leg eF ,

– max(XF
arr) : the latest possible arrival time for leg eF ,

– min(XF
dep) : the earliest possible departure for leg eF ,

– max(XF
dep) : the latest possible departure time for leg eF .

We will now explain the modeling of our reliability metric following the edges
of an itinerary step by step.
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3.2 Reliability Calculation

3.2.1 Transfer from Driving to First Flight

To model the connection between the first driving edge (D1) and the first flight
edge (F1), we evaluate the probability that the stochastic drive time Y D1 is
less than the difference between t and the start time τS and the transfer time
T tr
D1 in Equation (1). This is done for every t in the historical distribution of

the first flight, and the summation gives the connection probability between
the first driving edge and the first flight edge. The transfer time in this case
is reflective of check-in time, ticketing and traversing terminals and security.

P (CD1,F1) =

max(XF1
dep)∑

t=min(XF1
dep)

P (XF1
dep = t) · P (Y D1 ≤ t− τS − T tr

D1). (1)

Thus, we are able to get the initial reliability of the connection between the
driving edge and the initial flight.

3.2.2 Transfers Between Flights

Knowing how to compute this first connection between the driving and first
flight edge, the reliability of subsequent flight edges can now be computed as
follows. To arrive at this conditional probability, we must look at the sum-
mation of probabilities across all departure times of the first flight. Here, for
each t′ in the departure distribution of the first flight, we must compute its
frequency, the probability that the driving edge reaches the airport with suf-
ficient check-in time, and the probability associated with arrival time t given
a traveler departs at t′ for F1. This will give us the conditional probability of
arrival of F1 at t. This is outlined in Equation (2):

P (XF1
arr = t | CD1,F1)

=
P (XF1

arr = t) ∩ P (CD1,F1)

P (CD1,F1)

=

∑max(XF1
dep)

t′=min(XF1
dep)

P (XF1
dep = t′)P (Y D1 ≤ t′ − τS − T tr

D1)P (XF1
arr = t|XF1

dep = t′)

P (CD1,F1)
.

(2)

The arrival time distribution in Equation (2) is then used to compute the
probability of making the connection to the next flight in the itinerary and is
shown in Equation (3):

P (CF1,F2|CD1,F1) =

max(XF2
dep)∑

t=min(XF2
dep)

P (XF2
dep = t) · P (XF1

arr ≤ t− T tr
F1 | CD1,F1),

(3)
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where

P (XF1
arr ≤ t− T tr | CD1,F1) =

min[max(XF1
arr),t−T tr

F1]∑

t′=min(XF1
arr)

P (XF1
arr = t′|CD1,F1). (4)

We repeat this process for each flight in the itinerary. We can generalize Equa-
tion (3) to Equation (5) to compute the conditional probability of making a
connection between F (k) and F (k+1) given all the previous connections have
been made. Equation (5) holds for k = 2 . . .m− 1.

P (CF (k),F (k+1)|CD1,F1 ∩ · · · ∩ CF (k−1),F (k))

=

max(X
F (k+1)
dep )∑

t=min(X
F (k+1)
dep )

P (X
F (k+1)
dep = t)·P (XF (k)

arr ≤ t−T tr
F (k) | CD1,F1∩· · ·∩CF (k−1),F (k))

(5)

In order to compute the probability of an arrival time t for the kth flight on
the itinerary, a similar conditional probability argument as in Equation (3) is
used. Equation (6) evaluates this conditional probability for flight F (k) in the
itinerary. We can now define conditional arrival times for F (k) as

P (XF (k)
arr = t | CD1,F1 ∩ · · · ∩ CF (k−1),F (k)) =

∑max(X
F (k)
dep )

t′=min(X
F (k)
dep )

P (X
F (k)
dep = t′)P (X

F (k−1)
arr ≤ t′ − T tr

F (k−1)|CD1,F1 ∩ · · · ∩ CF (k−2),F (k−1))P (X
F (k)
arr = t|XF (k)

dep = t′)

P (CF (k−1),F (k) | CD1,F1 ∩ · · · ∩ CF (k−2),F (k−1))

(6)

where

P (XF (k−1)
arr ≤ t′ − T tr

F (k−1)|CD1,F1 ∩ · · · ∩ CF (k−2),F (k−1)) =

min[max(XF (k−1)
arr ),t′−T tr

F (k−1)]∑

t′′=min(X
F (k−1)
arr )

P (XF (k−1)
arr = t′′|CD1,F1 ∩ · · · ∩ CF (k−2),F (k−1)).

(7)

If an itinerary i is a PI, the conditional probability for the distribution of

the tail flight F (m) – P (X
F (m)
arr = t | CD1,F1∩ . . . CF (m−1),F (m)) – will become

the values for Xi
arr in the label for the itinerary. This allows us to use the

calculations for PIs to quickly compute the values for itineraries built from
adding a leg to a particular PI. For a PI, the value of reli will be computed
based on Equation (8):

reli =
∏

k=1,..m−1

P (CF (k),F (k+1)|CD1,F1 ∩ · · · ∩ CF (k−1),F (k)). (8)
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3.2.3 Final Driving Edge for Complete Itinerary

For a CI, the probability of arriving at the final destination is computed
based on the probability values for the prior connections and the likelihood
the destination is reached within the travel time budget B for the final driving
edge D2. Here, D2 represents the continuous distribution of drive times that
depart at the conditional arrival times of the last flight on the itinerary F (m).

We sum the values for P (X
F (m)
arr = t | CD1,F1 ∩ · · · ∩ CF (m−1),F (m)) from

t = min(XF
arr(m)) to τS+B to get P (Xm

arr ≤ τS+B | C1,2∩. . . CF (m−1),F (m)).
The transfer time T tr

D2 is determined by the amount of time required to unload
and find unscheduled transportation options. Then, our final calculation of
reliability for the CI is computed as follows:

reli =

τS+B∑

t=min(X
F (m)
arr )

P (XF (m)
arr = t|CD1,F1 ∩ · · · ∩ CF (m−1),F (m)) · P (Y D2 ≤ τS +B − T tr

D2 − t)

·
∏

k=1,..m−1

P (CF (k),F (k+1)|CD1,F1 ∩ · · · ∩ CF (k−1),F (k)). (9)

In Equation 9, we can see that the final leg of the itinerary D2 is a time-
dependent travel time from the conditional arrival times of F (m) to the final
destination. How to model the distribution of the random variables Y D1 and
Y D2 is outlined below.

3.3 Data-Driven Modeling of Drive Times

This paper seeks to combine historical data of drive times with historical
information of flight times to create reliable itineraries in a multi-modal travel
network. In doing so, we provide a more realistic model of the travel time’s
reliability for a CI from origin to destination between distant city centers.
Instead of modeling driving to and from the airport based on a detailed road
network model as mentioned in (9), we derive travel time distributions of
the drive to and from the airport and combine these with edges of our flight
network model. This will be sufficient to determine the most reliable door-to-
door itinerary.

In Sections 3.2.1 and 3.2.3, we modeled the random variable for driving
edges as Y D1 and Y D2. As shown in Section 3.1, these driving edges can be
defined by a tuple of (i, j, θ), where i and j are either city nodes c ∈ C or
airport nodes a1, a2 ∈ Ac. Thus, we can also write these edges as Y θ

ij denoting

the nodes they connect and their travel time block θ. Furthermore, Y θ
ij can be

defined as:

Y θ
ij = Rθ

ij + δθij , (10)
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where Rθ
ij is the baseline (lower bound) travel time for time block θ. Here, δθij is

a random variable from [0,dθij ], where d
θ
ij is also a fixed value for that time block

and edge. Therefore, Y θ
ij can fall anywhere in the interval of [Rθ

ij , R
θ
ij + dθij ].

We assume that there is a data source that gives us the required information
to derive these travel time distributions. Further explanation on how we use
this data source to build distributions for the driving edges D1 and D2 can
be found in Section 5.2.

4 Solution Approach

In the following, we present a stochastic network search algorithm that can
determine the MRI including stochastic information (1) on drive times to and
from the airport and (2) on the performance of flights. We extend a stochastic
network search for the most reliable combination of flights presented by (23). In
Section 4.1, we present the pseudo-code of the network search algorithm. As the
proposed algorithm would require a complete exploration of the investigated
travel network and hence lead to exhaustive runtimes, we introduce multiple
techniques that help reduce the runtime of the algorithm in Section 4.2.

4.1 Network Search Algorithm

We present the pseudo-code of the network search algorithm in Algorithm 1.
Initially, the reliability of the MRI is set to 0 (line 1). Alternatively, we can
initialize the reliability using stronger lower bounds. This is discussed in Sec-
tion 4.2.1. Next, in lines 5-10, initial PIs are created and added to the priority
queue (LIST ) using the initial time-dependent driving edges from the origin
to the closest airports. While the priority queue is non-empty, the PI with the
highest reliability measure is chosen (line 13), and new itineraries are created
for all edges emanating from the tail node of the PI, imax. If the reliability of
a new PI is greater than the current best value for the MRI, then it is added
to the priority queue (line 23). If the tail airport of the added edge is in Ad,
the set of airports closest to the destination, then a time-dependent driving
edge is added to the itinerary to form a CI, as shown in lines 28-32. If this CI
has a higher reliability than the MRI∗, then it serves as the incumbent MRI
(line 34). This process continues until the priority queue is empty, and then
the incumbent MRI∗ becomes the most reliable itinerary, MRI.

4.2 Runtime Reduction Techniques

Extending the ideas of the stochastic network search presented in (23), there
are three options to reduce the runtime required for the creation of reliable
itineraries: (1) the improvement of lower bounds, (2) network reduction tech-
niques, and (3) smart queue management. We will summarize the different
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Algorithm 1 Network Search: Finding the MRI
1: relMRI∗ = 0, LIST = ∅
2: k = 1
3: θ = time block at τS
4: for all a ∈ As do // Create labels for first driving edges
5: λk ← (s, a, θ)
6: πk ← E(Y θ

s,a)
7: relk ← 1
8: Zk ← Y θ

s,a

9: LIST ← LIST ∪ (λk, πk, relk, Zk)
10: k = k + 1
11: end for
12: while LIST �= ∅ do
13: imax = PI with highest reli of LIST labels
14: LIST ← LIST \ {imax}
15: em = tail edge of PI imax

16: Em = all edges adjacent to tail edge
17: for all ej ∈ Em do // Create label for new PI k
18: λk ← λimax ∪ ej
19: Compute relk as indicated in Equation (8)

20: πk ← τ j1 − τm2 + πimax + πj

21: Compute Xk
arr as indicated in Section 3

22: if Aj
2 /∈ Ad and relk > relMRI∗ then

23: LIST ← LIST ∪ (λk, relk, πk, Zk)
24: k = k + 1
25: else if relk < relMRI∗ then
26: Move to next ej ∈ Em
27: else
28: θ = time block at τk2 + T tr

D2

29: λk ← (ak2 , d, θ)
30: Compute relk as in Equation (9)
31: πk ← πk−1 +E(Y θ

a2,d
)

32: Zk ← Y θ
a2,d

33: if relk > relMRI∗ then
34: MRI∗ ← (λk, relk, πk, Zk)
35: end if
36: k = k + 1
37: end if
38: end for
39: end while
40: MRI = MRI∗

ideas that we use from the previous paper here and detail how we extended
them below.

4.2.1 Improvement of Lower Bounds

B1 Shortest Path Lower Bound: We can use the shortest travel time itinerary,
SP , to determine whether there is a feasible itinerary at all and to find a
lower bound on the reliability of the MRI. It is determined with Dijkstra’s
algorithm.

Adaptations:
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– Shortest Path Lower Bound (B1)
The initial shortest path reliability lower bound considers the shortest path
from the origin airport to the destination airport. To create the shortest
scheduled multi-modal travel time itinerary, we adapt this by using the
median travel time of the drive time distribution and the scheduled depar-
ture and arrival times of the flights. Then, the reliability of this path can
be calculated using Equation (9), and it replaces relMRI∗ in the first line
of Algorithm 1. This then serves as a stronger lower bound for relMRI∗

throughout the algorithm.

4.2.2 Network Reduction Techniques

N3 Removing Unneccessary Flights: We remove all flights that cannot be part
of a feasible solution if the scheduled start and arrival times would not be
within the limits of the budget.

N4 Travel Time Bound: This improvement technique eliminates potential flights
that would make the itinerary fall outside the bounds of travel [τS , τS+B].
In particular, we compute a minimum travel time between airports in the
network. Then, we prune flights from the network that would not be pos-
sible to take due to the minimum flight time getting to the destination or
arriving from the origin outside of the time constraints.

Adaptations:

– Travel Time Bound (N4) The travel time bound uses the median travel
time for the driving edges and a lower bound on the travel time of the flight
edges. As a lower bound for flight travel time, we calculate the haversine
distance between two airports and assume a constant speed of 500 MPH
to compute the bound for travel time. Each flight edge has a tuple that
contains information for the scheduled arrival airport and time and sched-
uled destination and time (a1, a2, τ1, τ2). If, beginning at τS , the minimum
combined flight travel time and driving time from s to a1 is later than τ1,
or if the minimum travel time from a2 to d is after τS +B, then the flight
is removed from the network at the beginning of the algorithm.

– Only Qualifying Flights We limit flights to only those with at least 15
observations. Note this number occurs with around 97% of the flights in
the experiments that were tested. We require 15 observations because we
observed having few observations can skew reliability results. We also limit
multi-flight itineraries to connections between partnering airlines.

4.2.3 Managing the Priority Queue

M7 Dominant Tail Flight Rule: We analyze partial flight itineraries, PFIs,
with regard to whether they have the same tail flight. If so, only the PFI
with the highest reliability should remain in the priority queue. This is due
to the fact that the PFI with an identical tail flight and lower reliability
will not be the MRI.
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Adaptations:

– Dominant Tail Edge Rule (M7) For each itinerary that is a candidate
to be added to the priority queue, it must go through three checks to
determine if it should be added. These are done to prevent itineraries with
identical or sub-optimal tail edges from being added to the priority queue.

– If there exists a PI from LIST whose reliability as calculated in Equa-
tion (8) is greater than the candidate itinerary’s reliability and has the
same tail airport, airline and an earlier scheduled arrival time than the
candidate, then the candidate PI is not added to the priority queue.

– If there exists a PI that has been previously selected from LIST that
shares and contains the tail flight of the candidate PI and has a greater
reliability than the candidate PI, then the candidate PI is not added
to LIST .

– If neither of the above items are true, the candidate PI will be added
to LIST . However, there may exist other itineraries on the priority
queue that have a later arrival time at the tail airport and a lower
reliability than the candidate PI. If such partial itineraries exist, they
are removed from the priority queue as they would not be viable for
the MRI.

5 Building Edge Distributions

Since we follow a data-driven approach using large amounts of publicly avail-
able data, in Section 5.1, we will analyze what amount and time period of data
is beneficial to create the empirical distributions for our flight edges. Section 5.2
examines how we use Google data and time blocks to create distributions for
the driving edges in our network.

5.1 Creating Most Accurate Flight Distributions

The distribution of travel times for our flight edges are derived from historical
flight data, which can be found in the United States Bureau of Transportation
Statistics’ (USBTS) historical database at http://www.transtats.bts.gov. The
database provides commercial domestic flight data dating back to 1987. For US
certified air carriers that account for at least one percent of domestic scheduled
traveler revenue, this database provides information on scheduled and actual
departure and arrival times. In this paper, we use data from the years 2016 and
2017. This represents data from over 16 million recorded flights. We seek to
understand what amount of data and what time period relative to the flight
will give us travel time distributions that improve the predictive ability of
the reliability metric. Once the appropriate amount of prior data to use for
the flight distributions has been determined, we can use the corresponding
probability mass functions (PMF) in our calculations of reliability.
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With most airline websites, the reported data for on-time percentage of a
specific flight is based on its performance over the previous month. However,
data from the previous month is not necessarily representative of the actual
delays that will be realized for that flight in the current month. Thus, we
will experiment to see if other time periods can improve the prediction of
flight travel times and thus itinerary performance. In order to minimize the
error between predicted and actual reliability of an itinerary, we examine an
itinerary’s observed reliability.

The predicted reliability will be built on empirical distributions from his-
torical data from a varying number of previous months. Since scheduled flight
times and numbers can change from week to week, we consider the flight to
be the same if it has a scheduled departure within an hour of the scheduled
departure of the chosen flight. For example, if we are analyzing an itinerary
from June, we include in a flight’s empirical travel time distribution any flight
from May (or another combination of prior months) that departs within 60
minutes of the scheduled departure time with the same origin, destination,
and airline. Then, we use these empirical distributions in Equations (1-9) to
calculate the predicted reliability. The actual reliability will be the outcomes
of an itinerary over all instances in one month. The itinerary is considered
successful if it reaches its destination within the budget and makes all con-
nections. The (average) actual reliability of the realized itineraries over the
current month is then compared to the predicted reliability measure based
on data from flights of previous months. For example, if one day in April a
flight connection was missed and another day the tail flight arrived late out-
side the budget, the itinerary would be successful in 28/30 instances for an
actual reliability of 93.3%. This is then compared to the predicted reliability
of that itinerary (90.1%, for example) and the error measure is 3.2%. Our
goal is to find which set of months to include in the empirical distributions
of the predicted reliability to reduce this error between predicted and actual
reliabilities.

Table 1 Airports Used for Distribution Testing

OD Pairs
Long (>1800 miles apart)
Newark, NJ (EWR) Los Angeles, CA (LAX)
San Jose, CA (SJC) Detroit, MI (DTW)
Panama City, FL (ECP) Bozeman, MT (BZN)
Norfolk, VA (ORF) Colorado Springs, CO (COS)
Medium (800-1400 miles apart)
Omaha, NE (OMA) Savannah, GA (SAV)
Bentonville, AR (XNA) Boston, MA (BOS)
Philadelphia, PA (PHL) New Orleans, LA (MSY)
Wichita, KS (ICT) Fort Wayne, IN (FWA)
Short (<400 miles apart)
Phoenix, AZ (PHX) San Diego, CA (SAN)
Houston, TX (HOU) Oklahoma City, OK (OKC)
Greensboro, NC (GSO) Washington, DC (DCA)
Cedar Rapids, IA (CID) Chicago, IL (MDW)
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In the following, we want to analyze systematically what historical data
creates the most accurate predicted reliability of itineraries across a range of
budgets, months and OD pairs. To do this, we look at a number of different
itineraries from short to medium to long distances between OD pairs. The
12 OD pairs we use for these experiments are listed in Table 1, and both
directions of the trip are considered. In addition, days for different months
(April, July, October, December) are considered to evaluate the impact of
seasonality on reliability as well as two different starting times (6:00 and 13:00)
and three different budget multipliers (1.1, 1.25, 1.50). The budget multiplier
is a multiple of the travel time of the SP . Thus, if SP takes 200 minutes to
get from origin to destination, then with a budget multiplier of 1.25, B would
be 250 minutes. The itineraries that are analyzed are based on the particular
SP for a given day in the month and start time, and the MRI for that day,
start time and budget. In order to be considered a valid itinerary, there need
to be at least 15 recorded instances for all legs on the specified itinerary for
predicted and actual distributions.

The reliability measure as outlined in Equation (9) is then calculated us-
ing each different predicted distribution. We consider a number of different
combinations of historical distributions that are used to determine which min-
imizes the error measure between the predicted and actual reliability. These
combinations include the previous month, the previous 3 months, the same
month from 1 year ago, the previous month plus the month from 1 year ago,
and the previous month plus 3 months from one year ago. These combinations
are chosen to test an effect of recency as well as seasonality on the predictive
power of the reliability measure. More data was added to distributions, such
as the previous 6 months or 4 months from one year ago, to test if adding data
would improve predictability. However, adding even more data did not seem to
create improvements, as measured by the average error or the variance of the
error. The Root Mean Squared Error (RMSE) is chosen as the error measure
due its sensitivity to large outliers (5), a key component that we look to avoid
with the reliability metric. As shown in Table 2, the previous month of data
has an RMSE for the SP and MRI of 1.26 and the RMSE is minimized for
both the SP and MRI itineraries when the previous month of data is used
along with the 3 months from 1 year ago.

Table 2 Comparison of the Predictive Power of Different Flight Distributions

Distribution Type RMSE SP RMSE MRI
(1) Past month 1.26 1.26
(2) Past 3 months 1.39 1.24
(3) Same month – 1 year ago 1.48 1.29
(4) Previous month + month from 1 year ago 1.24 1.18
(5) Previous month + 3 months from 1 year ago 1.20 1.07

This is further demonstrated in Figure 1, which shows a boxplot of the
absolute differences between predicted and actual reliability values for the dif-
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Fig. 1 Comparison of the Difference in Reliability Across Distributions

 

ferent itineraries. The 75th percentile of the instances from the distribution for
the prior month plus 3 months from 1 year ago (5) have a predictive error of less
than 8% for their reliability values. This is 2% better than all other distribu-
tions tested. There are also less extreme outliers for that distribution than for
other distributions. In some months, distribution (5) performed significantly
better than others, including December and October, when the seasonal com-
ponent is more important for predicting reliability. In April and July, recency
was slightly more important. However, overall, the 3 months from one year
ago plus the previous month were best at keeping the error for most of the
instances low while managing against many large outliers like distributions (1)
and (3). For these reasons, we chose to create predictive distributions consist-
ing of 3 months from 1 year ago plus the prior month as the flight distribution
in our experiments.

5.2 Creating Driving Distributions

Since we do not have extensive historical data for the driving edges, we use
predictive markers to form continuous probability density functions (PDF)
and cumulative distribution functions (CDF) for evaluation of reliability in
Equations (1) and (9). To create travel time distributions on driving edges,
we access the Google Maps API (14) to retrieve the driving times between a
given origin and a destination. For an OD pair in a road network, Google Maps
provides an “optimistic”, “best guess” and “pessimistic” drive time between
the two specified locations. We transform these three markers into a log-normal
distribution of continuous drive times following the ideas of (15). Those authors
reference numerous papers that suggest that the log-normal distribution is a
viable way to model traffic congestion and the uncertainty of drive times. This
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Table 3 Drive Time Blocks

Driving Time Block Time Window
Morning Peak Driving 07:00 – 09:00
Midday Driving 09:00 – 16:00
Afternoon Peak Driving 16:00 – 18:00
Free Flow Driving 18:00 – 07:00

distribution has non-negative properties and a long tail that can model large
traffic delays.

To model the time dependency of the drive times in the course of the day, we
divide the day into time blocks as seen, for example, with Uber movement data
(25). We use four separate time blocks defined by a range of times as listed in
Table 3. Each block is defined by three numbers based on a representative time
within that block. For example, for the Morning Peak Driving, the pessimistic,
best guess and optimistic travel times from the Google Maps API for 08:00
are used. This is then fit to a log-normal distribution, where the mean of the
log to the distribution is the log of the best guess travel time. Meanwhile,
the standard deviation of the distribution is the difference between the log
of the best guess drive time and the log of the pessimistic drive time divided
by 1.645. This represents that the pessimistic driving time is at roughly the
95th percentile of the distribution (or two standard deviations from the mean).
Once we have the mean and standard deviation to define this distribution, we
are able to include these stochastic driving times into our flight network model.

An example showing why we make the travel time along driving edges
time-dependent is given in Figure 2. The fitted distributions represent an ex-
ample driving edge from New York City center to LaGuardia Airport (LGA)
at different time blocks. They vary widely by both median and variance when
started in different time blocks. The off-peak block has a smaller travel time
median as well as little variance, while the afternoon peak block has more
variance and a longer tail to reflect rush hour delays. Note that, depending
on data availability, these can be further discretized by day of week and finer
time intervals, but for simplicity of this model, we have used the four daily
time blocks. We also enforce that these driving edges follow FIFO rules as
described in (13) ensuring that leaving the origin at a later time will not get
to the destination sooner.

Finally, we will demonstrate how we combine first and final driving edge
distributions with flight edge distributions. For the first driving edge, we use
the fitted log-normal distributions from the time block associated with the
start time. As shown in Figure 3, the continuous drive time distribution is
used to determine the missed connection with the historical distribution of the
first flight. Figure 3 demonstrates that at the most frequent departure (18:10)
of the flight from Newark airport (EWR), around 89% of the driving times
would make it to the airport on time. Thus, we are able to use Equation (1) to
calculate the conditional flight distribution after this first driving leg. Figure 3
shows, on average, driving from the city center to Newark will make it in time
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Fig. 2 Time Block Distributions Throughout the Day – New York City Center → LGA

 

Fig. 3 First Driving Edge – New York City Center (τS = 17:10) → EWR (τdep = 18:10)
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for all instances of the 18:10 flight. However, the PDF representing the driving
edge contains a long tail due to the pessimistic possibility of the driving edge,
which could cause a missed connection with this initial flight.

Fig. 4 Final Driving Edge – EWR (τarr = 16 : 05) → NY City Center (τS +B = 16 : 45)

 

 

 

For the final driving edge, we use the CDFs for the drive time distribution
from each airport to the destination city center and time block. To compute
the reliability of making it to the destination within the budget, we combine
the distribution of discretized flight arrival times that we have from the flight
network search and add the distribution of driving times to get a new CDF
that we can compare to the budget, as shown in Equation (9). An example
of the interaction between a flight arrival PMF and the CDF that represents
reaching the destination within the travel budget is shown in Figure 4. This
particular cross-country flight from Los Angeles to Newark (EWR) gets in
earlier than scheduled more than 80% of the time. Thus, at the median arrival
time of the flight (15:35), the traveler is able to reach the destination within
the budget near 100% of the time. However, late arrival times after 16:05 PM
indicate a near zero percent chance of reaching the destination within the
travel time budget. This modeling of drive time edges can help us gain more
insight into the interaction between these long-distance and first-mile modes
in further experiments.

6 Results

Using the distributions built in Section 5, we perform a set of experiments to
understand the characteristics and the value of reliable multi-modal itineraries.
We will describe the design of experiments in Section 6.1. We will break down
and analyze the results for different itineraries by budget, distance, city size,
and start time in the subsequent subsections.
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6.1 Design of Experiments

We use 30 OD pairs of city centers selected from the 1,000 most populated
cities in the United States (17). These OD pairs are displayed in Figure 5.
As noted in Table 4, we choose the 30 OD pairs such that there are 10 long-
distance, 10 medium-distance, and 10 short-distance pairs. For each ten, we
select two city center OD pairs by population, such that we have two Large-
Large, Medium-Medium, Medium-Large, Small-Large and Small-Small com-
binations.

Table 4 Parameters Tested Across Itineraries

Distance between cities City Size
Long-distance (>1800 miles) Large – Top 100 populated cities >200,000
Medium distance (800-1400 miles) Medium – Between 75-100,000
Short Distance (<400 miles) Small – 900-1000 largest cities <50,000
Start Times of Itineraries Budget Multipliers
06:00 1.1 – 110% of Shortest Travel Time
10:00 1.25 – 125% of Shortest Travel Time
16:40 1.5 – 150% of Shortest Travel Time
Itineraries Tested Days of Travel
MRI April 17th, 2017
SP July 17th, 2017
Closest October 17th, 2017
Biggest December 17th, 2017

We test the reliability of itineraries across a variety of categories as shown
in Table 4. These tests aim to show how the distance between cities, the
population of the cities, the start time during the day, the various budget sizes
and the different days of travel affect the reliability for multi-modal itineraries
created with different objectives. These itineraries include:

– MRI – most reliable itinerary,
– SP – shortest travel time itinerary based on median drive times and sched-

uled flight times,
– Closest – most reliable itinerary using the closest airport by median drive

time to the origin and destination,
– Biggest – most reliable itinerary using the largest airport based on number

of daily outgoing (origin) or incoming (destination) flights.

These different itineraries were tested with all of the parameters listed
in Table 4. In our experiments, the transfer time for the first driving edge
(T tr

D1) is 30 minutes to represent check-in time at the airport, and the transfer
time for the final driving edge (T tr

D2) is 15 minutes to represent de-planing and
getting an Uber, taxi, or ride-share. Note that with access to more information,
these transfer times could be made stochastic and time or airport-specific. All
algorithms were implemented in Python and run on an Intel Core i5 2.3 GHz
processor with 16 GB of RAM. Over 99.5% of MRI instances were solved
within 30 seconds with more than 77% of them solved in less than 1 second.
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Across the 2,160 different experiments, there were a number of interesting
trends that were revealed by the data.

Fig. 5 Our 30 City Center OD Pairs

 

6.2 Comparison Across Budgets

First, we want to understand how the different modes impact the reliability
of the itineraries. We want to see how this changes for different itineraries as
well as different budgets.

Table 5 Largo, FL → Santa Barbara, CA τS = 10:00; B = 14 hours

Itinerary
Type

Rel Lost
1st Drive

Rel Lost
Flights

Rel Lost
Last Drive

Total Rel Airports
Travel
Time

SP 8.4% 3.0% <0.1% 88.6% TPA → IAH → SFO 11 h 14 min
Closest <0.1% 15.7% 9.7% 74.5% TPA → IAH → SFO → SBA 12 h 52 min
Biggest 1.2% 6.5% 0.7% 91.6% MCO → ATL → LAX 12 h 38 min
MRI 0.3% 3.4% <0.1% 96.2% TPA → DFW → LAX 11 h 34 min
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As an example, we illustrate the differences between the itinerary types
from the city centers of Largo, FL to Santa Barbara, CA on December 13, 2017.
Table 5 highlights the different itineraries chosen based on different itinerary
types. It includes the reliability lost on the first driving edge (Rel Lost 1st
Drive), the reliability lost on flight connections/cancellations (Rel Lost Flights)
and the reliability lost on the final driving edge (Rel Lost Last Drive). Note
that the origin and destination airports can change according to the itinerary
type. The duration of the itineraries varies from 11 hours 14 minutes to 12
hours 52 minutes. SP picks the closest airport to combine the first driving
edge with the first flight edge (TPA) and loses most of its reliability due to a
tight connection driving and checking into the first flight. Going from the two
closest airports (TPA,SBA) to the destination, we see the reliability is lower
(74.5%) due mostly to flight connections and delays. The Biggest itinerary
chooses to fly from Orlando (MCO) to Los Angeles (LAX) and drive almost
3.5 hours to give a reliability of 91.6%. This route does have 1 hour and 25
minutes additional travel time over the SP . Finally, the MRI has a slightly
longer scheduled travel time at 20 minutes more than the SP , but it offers an
itinerary with a 96.2% reliability, an increase of 7.6% over the reliability of
SP .

Fig. 6 Comparing Reliability Across Budgets and Itinerary Types
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We next aggregate these reliability results from the experiments for all
OD pairs, itinerary dates and start times in Figure 6. We use different colors
to represent the average amount of reliability loss from a particular mode.
Specifically, green represents loss from the first driving edge, red represents
reliability loss from flight connections/cancellations, and yellow shows relia-
bility loss from the final driving edge. The overall reliability is then presented
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in blue. We analyze across the four different itinerary types and three different
travel time budgets.

Since SP always chooses the same itinerary regardless of budget, the 10%
reliability loss on the first driving edge and 8% on flight connections will be the
same across all budgets. The final driving edge varies in reliability loss as the
budget increases, giving more of a buffer for late-arriving flights. For Closest
itineraries with a budget multiplier of 1.1, the reliability after the first drive to
the airport is 93.1%, 81.8% after flight connections/cancellations, and 70.0%
overall after the final driving edge. Closest itineraries have relatively small
reliability losses on driving edges, which makes sense due to the shorter drives.
However, across budgets, the flight reliability loss is between 8-12%, which is
larger than with other itinerary types. This could be due to flying out of nearby,
smaller airports with less numerous and reliable flight selections. The lack of
a buffer on the final driving edge is highlighted in Biggest itineraries. While
first driving edge reliability and flight reliability are both better than for the
SP and Closest itineraries, these larger airports can be further away making
the final drive into the destination difficult to reach within the budget. This
causes a loss of nearly 25% in reliability from the final driving edge. Finally,
the reliability of MRIs is considerably higher with an average of 80.7%, 90.3%
and 96.0% across budget multipliers of 1.1, 1.25 and 1.5. MRIs are able to
find routes that can go to airports with more reliable flights while still creating
a driving time buffer that is within the travel time budget.

Fig. 7 Comparing Travel Time Across Budgets and Itinerary Types
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We also want to understand the change in travel time associated with
these changes in reliability. Figure 7 outlines the average travel time used
across the different stages of the itinerary. SP uses an average of 461 total
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Table 6 Comparing Buffer Time for Each Multi-modal Stage

Itinerary: Budget
Multiplier 1.1

First Driving
Edge Buffer

Avg Flight
Edge Buffer

Final Driving
Edge Buffer

SP 1 hr 18 min 1 hr 22 min 1 hr 6 min
Closest 1 hr 39 min 1 hr 24 min 47 min
Biggest 1 hr 47 min 1 hr 12 min 35 min
MRI 1 hr 46 min 1 hr 30 min 57 min

minutes of travel time, with 302 minutes spent flying or at airports and 87
and 72 minutes for first and last mile travel (including transfer time). The
travel itineraries to Closest airports do not have much drive time, but they
are accompanied by long waiting times at airports, while the opposite is true
for Biggest itineraries. Both closest and biggest itineraries have around 40,
60 and 120 minutes more travel time than the SP for budget multipliers of
1.1, 1.25 and 1.5, respectively. The MRI only has 6, 28 and 81 minutes of
additional travel time for reliability gains of 6%, 10% and 14% over SP as
shown in Table 6. Thus, depending on the situation, it may be beneficial to
give up some travel time to gain reliability.

In order to understand where this additional travel time is used and how it
affects reliability, it is important to look at how each itinerary utilizes buffer
times between legs. Table 6 outlines the buffer time for the respective stages of
multi-modal travel with a tight budget of 1.1. The First Driving Edge Buffer
is the difference between the scheduled time of the initial flight and the median
drive time to the airport. The average flight buffer is between the scheduled
arrival of one flight and the scheduled departure of the subsequent flight. The
final driving edge buffer is the difference between the budget and the median
drive time arrival at the destination.

The SP itinerary attempts to get to the destination as quickly as possible,
and the lack of buffer time is apparent, especially in the first driving edge.
The large amount of reliability loss (25%) for the Biggest itineraries can be
traced to a lack of buffer time on the final driving edge at only 35 minutes on
average. This can be problematic over long drives into city centers that have
large airports. When comparing SP and MRI, the reliability lost in each
stage is comparable to the buffer time given. The first driving edge for the
SP loses 10% reliability compared to 5% lost for MRI driving edges due to
the additional 28 minutes of buffer for the MRI. However, the MRI leaves 57
minutes of buffer for the final driving edge compared to 1 hour and 6 minutes
for the SP , and this results in higher reliability loss for the MRI (8.5% vs.
7.6%). The MRI is able to identify reliable legs and allot buffer time while
not sacrificing a large amount of travel time. This shows the necessity of an
algorithm to not only offer the shortest travel time or cheaper travel from
large airports, but also find the best combinations of flying and driving legs
to increase the reliability of an itinerary.



26 Michael Redmond et al.

6.3 Comparison Across Trip Distance

It is also important to know how the reliability of multi-modal itineraries
changes over trips of different lengths. Figure 8 compares results for long
(>1800 miles apart), intermediate (800-1400 miles apart) and short (<400
miles apart) distance for both the SP and MRI itineraries. The reliability
loss for the first driving edge on SP itineraries stays consistent regardless of
distance at around 10%. However, as the distance decreases, the reliability lost
on flight legs decreases significantly due to more direct flights. Meanwhile, the
final driving edge reliability loss increases from 2.2% to 5.0% as the budgets
are almost 400 minutes shorter for short-distance flights, making reaching the
destination in time with a stochastic driving edge more difficult.

Fig. 8 Comparing Reliability Across Distance Between OD Cities
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TheMRI reliability loss does not follow this same pattern across distances.
Long distance flights actually have a higher overall reliability than intermediate
and shorter flights. This is due to drive times for all three distance types being
close to two hours in total for the MRI. However, long, intermediate and
short itineraries differ drastically in budget with 797, 576, and 402 minutes,
respectively. Since there exists more of a buffer on driving edges but around
the same median drive times, this allows long MRI itineraries to be the most
reliable. Short MRI itineraries overcome their smaller travel budgets to be
more reliable than intermediate itineraries. This is due to having greater than
80% direct flights compared to 34% direct flights for intermediate itineraries.

Overall, the MRI improves the reliability of short, intermediate, and long
itineraries by 7.7%, 8.7% and 15.4% over SP itineraries. Thus, the MRI can
improve reliability across all trip types and within a multi-modal context,
particularly with longer distance itineraries.
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6.4 Comparison Across Different Times of Day

Fig. 9 Comparing MRI Reliability Throughout the Day
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Like with itinerary distance, reliability also changes with different start
times throughout the day. We examine early morning, mid-morning, and late
afternoon start times across all OD pairs, and the results are reported in Fig-
ure 9. The overall average reliability is lower as the day progresses, presumably
because of delay propagation and less flights being available.

There is, on average, a 10% increase in reliability for every start time
if the budget multiplier is increased from 1.1 to 1.25 and then another 5%
increase as the budget multiplier goes from 1.25 to 1.5. This shows the marginal
gain available from increasing the travel time budget to allow for more buffer
between edges. We also see the MRI itinerary with larger budgets being able
to mitigate the reliability loss on driving edges to less than 1%, but with
itineraries started later in the day, reliability is still lost on flight connections
and cancellations. Overall, these results indicate that leaving the origin at an
earlier time in the day will generally result in higher reliability.

6.5 Comparison Across City Size

We have also analyzed OD pairs that have different populations to see if any
differences exist based on city size. We found that the airport selected in
the MRI for medium size cities (75,000-100,000 people) tends to favor those
airports that are far away and large in size. This is shown in Table 7, which
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Table 7 Comparing Reliability Across City Size

City Itinerary
Daily Avg. OD
Flights (MRI)

Daily Avg. OD
Flights (Closest)

MRI Rel Closest Rel
MRI
Drive Time

Big-Big 822 394 89.0% 79.9% 1 hr 26 min
Medium-Medium 993 173 88.0% 70.3% 2 hr 45 min
Small-Small 584 355 88.3% 82.1% 2 hr 25 min

gives a number of possible explanations why this trend occurs. The sum of
the daily average flights out of the origin and the daily average flights into
the destination is given by Daily Avg. OD Flights. The MRI reliability is
relatively the same across city size, but is much lower for the Closest itineraries
for medium cities. The reason medium cities may be traveling further and to
larger airports could be explained due to this reduced reliability of closest
airports.

Table 7 shows the reliability choosing closest airports in Medium-Medium
itineraries is 70.3% while this same Closest itinerary for Big-Big and Small-
Small cities are 79.9% and 82.1%, respectively. This could be due to medium
cities being closest to smaller airports, as demonstrated by the 173 average
daily flights out of closest airports opposed to 394 or 355. This leads to driving
further for the MRI (2 hours 45 minutes vs. 1 hour 26 minutes). This could
all be due to bigger cities having an airport with more frequent and reliable
flights, whereas medium-sized city travelers must travel farther to find such
airports, and when they do travel far, they select hub airports.

6.6 Comparison Across Months

Travelers also need to know which time of the year can lead to changes in
reliability in case they are planning for a future vacation or business trip. As
shown in Table 8, there exists a difference among months in average reliability
for MRIs. This trend holds with SP as well, and it can most likely be at-
tributed to the higher airport traffic during the month of July as shown by the
1000-2000 more flights per day compared to other months. This heavy traffic
in travelers and flights can lead to delay propagation throughout the network
and cause a drastic decrease in average reliability. Unique discrepancies in re-
liability such as this one can help travelers form trip itineraries that avoid
situations or time periods that could result in a riskier journey with higher
probability of delays or missed connections.

Table 8 Differences in Reliability Across Months

Day of Travel Number of Flights MRI Rel
December 13th, 2017 15230 90.9%
October 16th, 2017 16382 90.9%
July 17th, 2017 17260 85.0%
April 17th, 2017 16343 89.2%
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6.7 Comparison of Airports

We examine which airports lost the most reliability per flight to understand the
impact that individual airports have on itinerary reliability. Across the 2,160
instances tested, we find the most reliable itinerary. For these itineraries, we
evaluate the average reliability lost for flights that go through each airport. The
chart below shows the 5 airports (of those with more than 100 flights) with the
most reliability lost per flight on average. As Figure 10 shows, O’Hare Airport
in Chicago (ORD) loses nearly 6% reliability on average from cancellations or
delays that caused missed connections. Additionally, Texas airports, Dallas-
Fort Worth (DFW), Houston Hobby (HOU) and Dallas Love (DAL), lost over
4% reliability along with Minneapolis (MSP). Based on these findings, it would
be wise for travelers to consider the possible delays or cancellations they may
face when using these airports.

Fig. 10 Most Reliability Lost Per Flight at Major Airports
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7 Conclusion

State-of-the-art traveler information systems can create multi-modal travel
itineraries, but they usually do not consider the reliability of the chosen trans-
portation services when creating these itineraries. In this paper, we have intro-
duced techniques for identifying reliable itineraries that could be integrated in
future traveler information systems. In particular, we have modeled scheduled
and unscheduled transportation services in a stochastic multi-modal network.

Our experiments show that reliable multi-modal itineraries differ signifi-
cantly from itineraries created with deterministic approaches. It is not obvious
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which combination of services can bring the traveler to his or her destination
in the most reliable way. Our approach can help improve decision making
through updated traveler information systems as follows:

– Consider traveler value of time versus value of reliability through the use
of a travel time budget,

– Use historical and predictive information to create reliable itineraries with
appropriate buffers across different modes,

– Increase transparency of systematic expected delays at particular times of
the day, seasons of the year, etc.,

– Consider not only local alternatives, but also include driving to larger air-
ports that are further away to increase reliability.

There are also advantages for transportation providers implementing our tech-
niques for identifying reliable itineraries:

– Foster the implementation of standards for airports and airlines that not
only look at on-time percentage, but also focus on number of missed con-
nections and cancellations for the entire itinerary,

– Adjust capacity and resources for airports to address loss of reliability at
peak times of year and times of day,

– Publish easy-to-understand reliability metrics embedded in multi-modal
travel itineraries on travel websites to increase awareness and encourage
return business for transportation services.

In future work, we plan to expand our reliability model to scheduled transit
modes, such as buses or trains, as well as first-mile and last-mile travel with
delayed or non-guaranteed supply, such as bike or ride sharing services. We
plan to partner with local governments and companies to obtain this data
and turn our focus to regional itineraries. It will be interesting to see how
our models will perform given the characteristics of regional transportation
networks.

8 Appendix

Table 9 examines key statistics from each of the OD pairs considered in the
experiments from Section 6. SP # Flights and MRI # Flights is the average
number of flights on itineraries between these cities. For example, New York
to Los Angeles always chooses direct flights while Bozeman, MT to Panama
City, FL averages more than 3 flights. The reliability for each stage of the
SP and MRI itineraries are also displayed. This OD summary table can help
trace which cities have reliability loss at different stages and how to use this
to plan more reliable itineraries.
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urban public transportation: How to find reliable journeys based on past observations.
ATMOS ’13 pp. 27–41 (2013)

5. Chai, T., Draxler, R.R.: Root mean square error (rmse) or mean absolute error (mae)?
- arguments against avoiding rmse in literature. Geoscientific Model Development 7(3),
1247–1250 (2014)

6. Chen, J., Lisser, A.: Maximum probability shortest path problem. Discrete Applied
Mathematics 192, 40–48 (2015)

7. Delling, D., Dibbelt, J., Pajor, T., Wagner, D., Werneck, R.: Computing multimodal
journeys in practice. International Symposium on Experimental Algorithms pp. 260–271
(2013)

8. Devarasetty, P., Burris, M., Shaw, W.: Do travelers pay for managed-lane travel as they
claimed they would? before-and-after study of travelers on katy freeway, houston, texas.
Transportation Research Board: Journal of the Transportation Research Board 2297,
58–65 (2012)

9. Dibbelt, J., Pajor, T., Wagner, D.: User-constrained multimodal route planning. Journal
of Experimental Algorithmics (JEA) 19 (2015)

10. Duan, Z., Sun, S., Sun, S., Li, W.: Stochastic time-dependent vehicle routing problem:
Mathematical models and ant colony algorithm. Advances in Mechanical Engineering
7(11) (2015)

11. Ehmke, J., Campbell, A.: Customer acceptance mechanisms for home deliveries in
metropolitan areas. European Journal of Operational Research 233, 193–207 (2014)



32 Michael Redmond et al.

12. Ehreke, I., Hess, S., Weis, C., Axhausen, K.: Reliability in the german value of time
study. Transportation Research Record: Journal of the Transportation Research Board
2495, 14–22 (2015)

13. Fleischmann, B., Gietz, M., Gnutzmann, S.: Time-varying travel times in vehicle rout-
ing. Transportation science 38(2), 160–173 (2004)

14. GoogleMaps: ”https://developers.google.com/maps/documentation/” (2018). Ac-
cessed 13 December 2018

15. Guessous, Y., Aron, M., Bhouri, N., Cohen, S.: Estimating travel time distribution
under different traffic conditions. Transportation Research Procedia 3, 339–348 (2014)

16. Hossan, M.S., Asgari, H., Jin, X.: Investigating prefernce heterogenieity in value of
time (vot) and value of reliability (vor) estiamtion for managed lanes. Transportation
Research Part A: Policy and Practice 94, 638–649 (2016)

17. Jones, R.: 1000 largest u.s. cities by population with geographic coordinates. ”https:
//gist.github.com/Miserlou/c5cd8364bf9b2420bb29” (2013). Accessed 13 December
2018

18. Keyhani, M.H., Schnee, M., Weihe, K., Zorn, H.P.: Reliability and delay distributions
of train connections. In: OASIcs-OpenAccess Series in Informatics, vol. 25. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)

19. Kou, W., Chen, X., Yu, L., Qi, Y., Wang, Y.: Urban commuters’ valuation of travel time
reliability based on stated preference survey: A case study of beijing. Transportation
Research Part A: Policy and Practice 95, 372–380 (2017)

20. Maan, M.: Rome2rio launches all-new app for ios. ”https://www.rome2rio.com/blog/
2018/06/12/new-rome2rio-app/” (2018). Accessed 13 December 2018

21. McCoy, K., Andrew, J., Glynn, R., Lyons, W.: Integrating shared mobility into mut-
limodal transportation planning: Improving regional performance to meet public goals.
Tech. Rep. DOT-VNTSC-FHWA-18-13; FHWA-HEP-18-033, Federal Highway Admin-
istration: Office of Planning, Environment and Realty (2018)

22. Musulin, K.: Coord unveils routing api to support multimodal trip planning. ”https:
//www.smartcitiesdive.com/news/coord-routing-api-multimodal-trip-planning/

524525/” (2018). Accessed 13 December 2018

23. Redmond, M., Campbell, A.M., Ehmke, J.F.: The most reliable flight itinerary problem.
Networks pp. 1–19 (2018)

24. Tu, Y., Ball, M., Jank, W.: Estimating flight departure delay distributions - a statis-
tical approach with long-term trend and short-term pattern. Journal of the American
Statistical Association 103(481), 112–125 (2008)

25. UberTechnologies: ”https://movement.uber.com” (2018). Accessed 13 December 2018

26. Ulloa, L., Lehoux-Lebacque, V., Roulland, F.: Trip planning within a multimodal urban
mobility. IET Intelligent Transport Systems 12(2), 87–92 (2017)

27. Wang, L., Yang, L., Gao, Z.: The constrained shortest path problem with stochastic
correlated link travel times. European Journal of Operational Research 255, 43–57
(2016)

28. Wong, Y., Hensher, D., Mulley, C.: Emerging transport technologies and the modal
efficiency framework: A case for mobility as a service (maas) (2017)



 



Otto von Guericke University Magdeburg
Faculty of Economics and Management
P.O. Box  4120 | 39016 Magdeburg | Germany

Tel.: +49 (0) 3 91 / 67-1 85 84
Fax: +49 (0) 3 91 / 67-1 21 20

www.ww.uni-magdeburg.dewww.fww.ovgu.de/femm

ISSN 1615-4274


