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Abstract

Clinical trials play a decisive role in the drug approval processes. By completing a

p-curve analysis of a newly compiled data set that consists of thousands of clinical

trials, we substantiate that the occurrence of p-hacking in clinical trials is not merely

hypothetical. Medical and pharmaceutical research consists of both primary and sec-

ondary study endpoints. The primary finding covers the main effect, which directly

influences the approval process, while the secondary outcome delivers further additional

information. For primary p-curves, we observed an abnormal increase in the p-value

frequency at common significance thresholds, while the secondary p-curves exhibited

no such anomaly.
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1 Introduction

The reproducibility problem is increasingly attracting attention within the area of academic

research. Over the last decade, a debate has evolved that spans various scientific disciplines

and concerns the misuse of statistical inference that originates from a misunderstanding of

fundamental statistical concepts or conscious deception (Ioannidis, 2005; Simmons et al.,

2011; Wasserstein & Lazar, 2016; Farland et al., 2016). This aberration leads to the er-

roneous processing of data and misinterpretation of empirical findings. The overall lack of

corroboration derails scientific progress because it engenders a situation in which researchers

linger on in the twilight of selective reporting. In 2016, the American Statistical Associa-

tion released a statement on p-value interpretation and application in the best sense of the

wisdom: cum hoc ergo propter hoc. The statement emphasizes how satisfying significance

thresholds does not imply a higher probability of true hypotheses; vice versa, the p-value

only indicates how incompatible the data are with the hypothesis (Wasserstein & Lazar,

2016; Krzywinski & Altman, 2017). The lack of good statistical practice results in the need

for researchers to enhance the reproducibility of scientific findings in a variety of academic

fields, including clinical research (Ioannidis & Trikalinos, 2007; Ioannidis et al., 2009; Prinz

et al., 2011; Collins et al., 2014). In this paper, we present a meta-analytical approach that

proves that the misuse of statistical methods does occur in clinical trials.

The main objectives of the regulatory authorities that oversee the pharmaceutical industry

are to protect and support public health by monitoring the development and distribution of

prescription and nonprescription medication. Clinical trials are an essential component of the

process by which drugs are approved for use in humans (Seife, 2015). Statistical validity is the

baseline for ethical clinical research (Emanuel et al. 2000). Scientifically unsound research

not only violates ethical standards (CIOMS, 2002), it can also have negative consequences

for human health since an insufficient efficacy of drugs might lead to slower or less significant

recovery. Furthermore, any unanticipated side effects of the drug could negatively impact the
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quality of life of the patient. However, at present, supervisions focus is mostly on technical

and medical procedures rather than on statistical approaches (Bradshaw, 2009). Even if it

is assumed that data dredging in clinical trials occurs very rarely (Al-Marzouki et al., 2005;

Buyse, M. et al., 1999), statistical analyses incorporates various parameters that allow for

the manipulation, deception, and modification of the underlying data.

To investigate the gap between expectations and reality in terms of the application of good

clinical practice, we engage the meta-analytical p-curve approach (Simonsohn et al., 2014),

which is prominent in psychological science, to evaluate a specially compiled data set that

consists of thousands of clinical trials conducted in the United States over the last 15 years.

Main question is: What can the p-value distribution in the body of clinical studies tell us

about whether there was data-dredging?

The p-curve provides an opportunity to distinguish between selective reporting or specifi-

cation search on the one hand, and the truth on the other hand (Simonsohn et al., 2014).

It is an observation about the frequency distribution of p-values. In the current study, this

distribution was shaped by the results of clinical trials. The rationale that underpins the

p-curve is simple: If there is no effect, the p-curve has a uniform distribution. If effects in the

studies occur, then there is a right-skewed distribution of the p-curve. The more statistical

power the steeper the slope of the p-curve becomes. In other words: A right-skewed p-curve,

which encompasses a set of independent findings with continuously decreasing p-values from

low to high, is an indicator of evidential value. When p-curves differ from that ideal-typical

shape, we assume a partial lack of evidential value in the set of findings. The intensity of

data dredging is determined by an abnormality in the shape of the p-curves, respectively

the deviation from the ideal-typical graph. Power law frequency examples, like Zipfs law or

the Pareto distribution, span many scientific fields and also appear in empirical data (New-

man, 2005). The p-curve itself is a power law probability distribution that is applicable to

meta-analyses of any empirical scientific discipline. Strategies by which data dredging can

be identified via scrutinizing probability values have evolved over recent years within several
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research fields (Masicampo & Lalande, 2012; Jager & Leek, 2014; Head et al., 2015). While

this approach is by no means new, its use as a means of detecting p-hacking in clinical trials

is.

Drug approval processes can span over a decade and the expenditure pharmaceutical com-

panies invest in the process of conducting clinical trials and gaining approval can escalate

into billions of U.S. dollars (Scannell et al., 2012). However, drugs can generate average

annual peak sales of around one billion U.S. dollars (Mullard, 2014). The higher industry

expenditures translate into higher expectations for future returns. A remarkable possibility

of an unsuccessful approval process remains (DiMasi et al., 2003) such that investments can

easily become sunk costs. Naturally, the main players in the pharmaceutical industry at-

tempt to increase the probability of a new drug gaining approval and take proactive action

to contemporaneously improve the prospect of its success on the drugs market. Contract

research organizations and research institutes conduct time-consuming clinical trials on be-

half of pharmaceutical companies. In addition to fostering a positive reputation, researchers

are also heavily focused on having their findings published in professional journals (Weir &

Murray, 2011). In light of the congruent incentive structures that motivate stakeholders,

industry and research organizations, and given the fact that human health is the pivot of all

efforts, an empirical meta-analysis of clinical trials appears to be long overdue.

2 Data & Method

The data set that is assessed in this study was compiled on the basis of clinical trials that

were conducted to gain Food and Drug Administration (FDA) approval for new drugs. The

results of the clinical trials were provided by the U.S. National Institutes of Health (NIH).

The FDA approval process constitutes a regulatory market entry barrier for pharmaceuticals.

When the drug has passed preclinical trials in laboratory animal testing, and the FDA

accepts sponsor-companies Investigational New Drug Application (IND), tests on humans
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can begin. Our analysis takes into account all clinical trials that were conducted before

market maturity between 2002 and December 2016. Only studies that completed phase

three were considered since this phase is the last before beginning the new drug application

process (NDA). The acquired data is from 6,081 studies with results, of which 2,841 provided

at least one p-value. We only employ exact p-values, e.g., those without relational operators,

to preclude the reason for the occurrence of any peak at the five percent level being due to

inaccurately reported p-values. The final data set consisted of 1,177 completed trials, 20

percent of which the 19,584 p-values were related to primary outcomes and 80 percent to

the secondary. Primary study endpoints tackle the major effect of the drug, while secondary

study endpoints capture additional information for explanatory purposes (D’Agostino, 2000;

Meinert, 2012). Single trials include several measurements related to the same medication

but differ in terms of dose or duration of treatment. To achieve the statistical independence

of p-values and trials, we drew a random sample without replacement, capturing a single

p-value for each trial.

Despite ex-ante deception capabilities during data generating processes, p-hacking focuses

on ex-post researcher degrees of freedom (Simmons et al., 2011). It appears widely in various

scientific disciplines including medical and health research (Head et al., 2015). P-hacking

comprises ex-post determination of sample size, excluding outliers, or a specification search

concerning various numbers of variables or alternating covariates (Simmons et al., 2011;

Simonsohn et al., 2014). Making use of researchers degrees of freedom might be perceived to

represent a trivial offense; however, there is a thin line between obvious scientific deception

and fraud; although the appearance of fraud is assumed to be less frequent (Fanelli, 2009).

The FDAs strict guidelines for reporting and the persistent monitoring process has led to the

disclosure of many cases in which clinical research standards have been violated (Seife, 2015;

Buyse, 1999; George & Buyse, 2015). The existence of additional undiscovered violation of

good clinical practice is very likely even if the amount of further irregularities is difficult

to quantify (Seife, 2015; George & Buyse, 2015). The distinct verification of p-hacking
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in single studies is impossible without replication. However, reproducibility comes to the

fore in various disciplines; e.g., in the replicability projects that are common in the field

of psychology (Open Science Collaboration, 2015) or the sound replication initiatives in

experimental economics (Camerer et al., 2016). Literature that supports the imperative

character of reproducibility in medical science also exists. Earlier studies addressed the

statistical validation of fraud (Ranstam et al., 2000) or evaluated data on clinical trials

by industry researchers, with one paper indicating that literature data on potential drug

targets should be viewed with caution (Prinz et al., 2011). Additionally, previous research

has presented evidence that indicates misconduct occurs more frequently in medical and

pharmacological research than in other disciplines (Fanelli, 2009). The publication bias,

which is commonly known as the file-drawer effect, describes how the residual scientific work

above the five percent level ends up in the file drawer. This is also a serious problem because

it entails there is less tolerance of null results and a greater willingness to publish only

significant results (Rosenthal, 1979).

First, and contrary to replication of single studies, the meta-analytical approach allows for an

investigation that evaluates the overall statistical validity of clinical results. Second, the data

could help to avoid the file-drawer problem since FDA rules specify that all non-significant

results should be made publically available (NIH, 2016). However, the problem remains that

many industry and research organizations often fail to publish the results of clinical trials.

This represents a violation of ethical standards, can have potential ramifications for patient

well-being, and prevents quality improvements by auditioning (Saito & Gill, 2014; Miller et

al., 2015; Powell-Smith & Goldacre, 2016). To avoid this, the U.S. Department of Health

and Human Services (HHS), as the mother agency of the NIH and FDA, has implemented

rules that specify the amount of information about clinical trials that should be provided to

the public (NIH, 2016).

The figures in this paper cover expected and observed p-curves. An expected p-curve depicts

an ideal-typical form of probability intervals of observing certain p-values. Its calculation

5



depends on the parameters of sample size, effect size, and non-centrality. Hence, its shape

bases on the level of statistical power following the function: The higher the power, the

more pronounced the p-curves right-skew is (Simonsohn et al., 2014). The second step

involves the depiction of observed p-curves regarding primary and secondary endpoints. We

subdivide the continuous frequency distribution into clusters to enable the statistical analysis

of all p-curves. We then examine the p-value intervals at the ten percent significance level.

The resulting p-curves allow us to observe the frequency distribution of the p-values. We

employ two different types of proper and bounded intervals. The first interval is closed,

[.0, .01] = {pi | .0 ≤ pi ≤ .01} denoted after the right interval boundary: .01 interval.

Subsequent intervals to the ten percent level are all left-open and right-closed, (pl, pr] =

{pi | pl ≤ pi ≤ pr} also denoted after the right interval boundary: pr-interval.

Our first hypothesis states that the primary and secondary outcomes would be inhomoge-

neous interval frequencies. We assume that significant inhomogeneous interval frequencies,

respectively p-curve shapes, could be attributed to differences in the relevance for approval

and publication chance. We test the stochastic independence of primary and secondary

p-curves using a chi-squared test on the frequency of p-value intervals. The next hypoth-

esis analyzes anomalies in the p-curve. According to literature, we assume that a signif-

icant increase in the frequency of p-values slightly below the five percent level could be

assessed as evidence of p-hacking (Bradshaw 2009; Simonsohn et al., 2014). The graph of

a p-curve reporting evidential values asymptotically approaches zero. The higher the p-

value, the lower is the respective interval frequency. To ensure drug approval and enhance

publication chance, many industry and research organizations deliver results that are be-

low the five percent significance level at a minimum. Our second hypothesis states that,

if p-values are more likely to occur at the five percent level than in the preceding inter-

val, this represents evidence of p-hacking in clinical trials. We provide two proper and

bounded intervals to consider that various boundaries, indeed, affect the statistical results

of binomial tests differently. The lower small interval is closed and has following properties:
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[.04, .045] = {pi | .04 ≤ pi ≤ .045}. The upper small interval is left-open and right-closed

with the following properties: (.045, .05] = {pi | .045 ≤ pi ≤ .05}. The secondly tested

intervals are larger. The lower large interval is closed and has the following properties:

[.03, .04] = {pi | .03 ≤ pi ≤ .04}. The upper large interval is left-open and right-closed with

the following properties: (.04, .05] = {pi | .04 ≤ pi ≤ .05}. To test our second hypothesis,

we perform binomial tests on the small and large interval pairs including the five percent

threshold and the preceding interval, taking into consideration both study endpoints.

3 Results

The discrete representation of the observed p-values reveals major differences between the

primary and secondary distribution, as exhibited in Figure 1. As this figure displays, the

secondary p-value frequency corresponds to the shape of an expected p-curve. The primary

p-values indicates strong anomalies in the distribution, which exhibits three solitaire peaks,

above the first one near the null, rising at three significance thresholds. The most prominent

peak rises at the most prominent significance level of five percent, while the two remaining p-

value peaks rise at the .01 and .03 thresholds. The .01 threshold is popular in most scientific

disciplines. The secondary p-values in Figure 1 do not exhibit such abnormalities.

Although its discrete representation has a fortuitous nature, the secondary p-values roughly

correspond to the hypothetical expectations, which are confirmed by visual examination of

Figure 1. A prominent peak in the shape of the primary p-curve can be observed in Figure

2 at the .05 interval. The frequency of p-values occurring at the five percent level is higher

than the relative frequency of the .02 , .03 and .04 intervals. Interestingly, a harsh decline

immediately after the .05 interval becomes evident since both the .06 and .07 intervals

have a lower relative frequency than the .08 and .09 intervals. This anomaly disappears

not before the ten percent significance level. The inconsistency becomes even more obvious
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if we compare the shape of the primary and secondary p-curves in figure 2 on page 9. The

secondary p-curve exhibits a monotonously decreasing function over almost all p-value in-

tervals. As the secondary p-curve in figure 2 corresponds to the ideal-typical shape of the

expected p-curve, the primary p-curve contradicts it.

Figure 1: Discrete representation of observed p-values from primary study endpoints to the
ten percent significance level. The abscissa displays the p-values while the ordinate depicts
the relative frequency of the respective p-values. The difference between the primary and
secondary p-value sample sizes is due to the fact that not all clinical trials contain secondary
study endpoints.

Our first hypothesis states that primary and secondary outcomes have inhomogeneous in-

terval frequencies. We therefore test the stochastic independence of the observed p-curves

by performing a chi-squared test on the frequency of p-value intervals and their position as

primary or secondary outcomes. The results of this test led us to reject the null of statisti-
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cal homogeneity between primary and secondary p-curves [DF=9 — TS=33. 0689— Prob.

= 0.000]. The next hypothesis tackles anomalies in the p-curve. We assume that there is

evidence of p-hacking in clinical trials if p-values are more likely to occur at the five percent

level than at the preceding interval. Therefore, we conduct binomial tests for uniform distri-

bution of those intervals for primary and secondary p-values and small and large intervals.

Figure 2: The p-curve is an observation of the frequency distribution of p-values from pri-
mary and secondary study endpoints up to the ten percent significance level. The abscissa
displays the p-value intervals while the ordinate depicts the relative frequency of the respec-
tive interval. The difference between the primary and secondary p-value sample sizes is due
to the fact that not all clinical trials contain secondary study endpoints.

As such, for the binomial test on the small primary intervals, we reject the null hypothesis

[N=80 — Obs. p=.7375 — Pr (k 59) = 0.000]. For small secondary intervals, the null

hypothesis of uniform distribution could not be rejected [N=116 — Obs. p=.57759 — Pr
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(k 67) = 0.057]. The tests on the large intervals confirm this pattern. We could reject the

null hypothesis on the large primary intervals [N=128 — Obs. p=.57812— Pr (k 74) =

0.046]. For the large secondary intervals, the null of uniform distribution could clearly not

be rejected [N=175 — Obs. p=.48 — Pr (k 84) = 0.727].

Figure 3: Primary, secondary, and expected p-curve up to the ten percent significance level.
The abscissa displays the p-intervals while the ordinate depicts the relative frequency of the
respective p-interval.

The findings reveal that the occurrences of primary p-values are more likely at the five per-

cent level interval than at the preceding level. Figure 3 allows a direct comparison of the

expected and observed p-curves. The expected p-curve is depicted by the green line and is

based on a sample of 300 participants, considering an average effect size of .19 in clinical

trials (Fukunaga & Kusama, 2014). The primary p-curve is represented by the blue line,
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and the secondary p-curve is illustrated by the brown line. While the expected p-curve

exhibits the lowest frequencies from the second interval on, both observed p-curves feature

higher values virtually throughout all intervals with the exception of the first. Compared

to the expected distribution, the secondary p-curve clearly features the ideal-typical shape

of a monotonously decreasing function. The sole remaining distinctive feature is a flatter

asymptotical approach to zero. Contrary to this, Figure 3 makes the anomaly of the primary

p-curve even more obvious. All graphs and tests lead to a pronounced peak at the crucial

five percent level of the primary p-curve.

4 Conclusion

In the current study, graphical examinations of the observed p-curves revealed strong anoma-

lies in the distribution of primary p-values. The chi-squared test confirmed the statistical

independence of primary and secondary p-curves. Further, by performing binomial tests,

we proved significance for increasing frequencies of primary p-values left to the five percent

level. Our findings indicate that there is a clear pattern in the data: Uniform distribution

of the p-value data of the examined intervals is more presumable for the secondary results

than it is for the primary results. The binomial tests highlight an anomaly in the shape of

the primary p-curve, while the secondary p-curve corresponds to the ideal-typical shape of

the expected p-curve under the assumption of evidential values.

We interpret the increasing frequencies of primary p-values left to the five percent level as

evidence of p-hacking in clinical trials since primary outcomes are more decisive for the drug

approval contrary to secondary outcomes, which are mainly tested due to their informative

character (D’Agostino, 2000; Frantz, 2004). It is reasonable to assume that, despite the

importance of ethical standards and statistical validity in clinical research, p-hacking is not

merely hypothetical. We also would argue that researchers ambition of data-dredging is
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limited (Simonsohn et al., 2014). P-hacking is only necessary until the p-value is less than

or equal to the .05 level. This perfectly explains the peak at the five percent level even if we

do not consider all inaccurately reported p-values in our analysis.

Regulations and compliance monitoring have major direct effects on the rejection rates and

the time-to-market of newly developed drugs (Eichler et al., 2008). The more restrictive

regulations are, the higher the probability that effective drugs will be rejected; vice versa, the

less restrictive regulations are, the higher the probability ineffective drugs will be approved

(Eichler et al., 2008). P-hacking might be no trivial offense but regulatory authorities, in

general, are operating on a thin line between contrary objectives in respect to drug approval

processes.

The p-value indicates the likelihood of a result occurring by chance alone. The null hypoth-

esis significance testing is an arbitrary statistical construction that does not imply higher

probability of a true hypothesis and indicates only how incompatible the data are with hy-

pothesis (Wasserstein & Lazar, 2016). In the light of necessity of reproducibility, especially

in medical science, the p-value is an imprecise tool for inference statistics since it is strongly

influenced by sampling variability (Cumming, 2008).

Long-run progress in science needs corroboration. The short-run interests of publishing,

funding, and research institutions are often in direct conflict with those long-run interests.

A sound understanding hand in hand with proper application of statistics and robust exper-

imental designs can help to cure the problem of data dredging and simultaneously enhance

ethical standards. It is about time that incentives are established and institutions make

stakeholders recognize that long-run needs are in their own best interests.
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