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Abstract: The present paper is concerned the effects of gravitational force and rotation in a composite multilayered hollow cylinder
which contain inner and outer piezo-thermoelasticity layers bonded by Linear Elastic Material with Voids (LEMV) within the
frame of dual-phase-lag model.Also the composite multilayered hollow cylinder coated with thin film is considered.The equation
of displacement components, temperature, and electric are obtained using linear theory of elasticity. The dispersion equations
are acquired by means of traction free boundary conditions and are numerically analyzed for CdSe material.The enumerated
frequency, thermal and electrical nature against wave number in the presence of gravatity and rotation is presented graphically.
Adhesive layer LEMV is compared with Carbon Fiber Reinforced Polymer (CFRP) in presence of gravity and rotation.
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1 Introduction

Piezoelectric materials are ordinarily utilized for savvy structure applications because of their direct and converse piezoelectric
impacts which enable them to be used as the both actuators and sensors. The structure and development of piezoelectric whirligigs
and other pivoting sensors have significant applications in innovation. The investigation of the impacts of turn on the proliferation
of waves in piezo-thermoelastic cylinder has been broadly examined in the previous two decades.
Lord and Shulman (1967) at first investigation the generalized dynamical hypothesis of thermoelasticity.Singh et al. (2017) studied
proliferation of Rayleigh wave in two temperature dual phase lag thermoelasticity.Green and Lindsay (1972) explored different parts
of thermoelasticity. Othman et al. (2017) examined impact of magnetic field on generalized piezo-thermoelastic rotating medium
with two relaxation times. Assessment of the fundamental properties of thermomechanics, by Green and Naghdi (1991).Mindlin
(1974) determined the conditions of high recurrence vibrations of thermo-piezo-electric plate.Green and Naghdi (1992) talked
about undamped heat waves in a elastic solid. Abou-Dina et al. (2017) figure a model for nonlinear thermo-electroelasticity
in broadened thermo-electroelasticity in expanded thermoelasticity. Green and Lindsay (1972) clarify thermoelasticity without
vitality scattering.Abo-Dahab (2015) examined proliferation of Stoneley waves in magnetothermoelastic materials with voids and
two unwinding times. Abd-Alla et al. (2013) considered propagation of rayleigh waves inmagneto-thermo-versatile half-space
of a homogeneous orthotropic material under the impact of the rotating, starting pressure and gravity field.Impact of magnectic
field on poroelastic bone model for inward rebuilding by Abo-Dahab and Abd-alla Abd-Alla and Abo-Dahab (2013).Othman and
Lotfy Othman and Lotfy (2013) discussed about the impact of magnectic field and rotate of the 2-D issue of a fiber-fortified
thermoelastic under three hypotheses with impact of gravity.Samal and Chattaraj (2011) detail another advancement for surface
wave proliferation in fiber reinforced anisotropic elastic layer between fluid immersed permeable half space and uniform fluid
layer.Paul and Raman (1993) found wave engendering in a pyroelectric cylinder of arbitrary cross segment with a round cylindrical
cavity.Paul and Nelson (1996) plan ideas of axisymmetric vibration of piezocomposite hollow circular cylinder.Puri and Cowin
(1985) found plane waves in direct elastic materials with voids. The old style pressure vessal issues for direct elastic material
with voids talked about by Cowin and Puri (1983).Ponnusamy (2013) examined wave proliferation in a piezoelectric solid bar
of circular cross-section immersed in fluid. Impact of rotation on generalized thermo-viscoelastic Rayleigh-Lamb waves by
Sharma and Othman (2007).Assaf et al. (2010) explored vibration and acoustic reaction of damped sandwich plates drenched in
a light or heavy fluid. Ebenezer and Ramesh (2003) analysis of axially polarized piezoelectric cylinders with arbitrary boundary
conditions on the flat surfaces.Botta and Cerri (2007) described wave propagation in Reissner-Mindlin piezoelectric coupled
cylinder with non-constant electric field through the thickness.Waves in rotating and conducting piezoelectric media is described
by Wauer (1999).Roychoudhuri and Mukhopadhyay (2000) investigated effect of rotation and relaxation times on plane waves in
generalized thermo visco elasticity.Dragomir et al. (2014) discussed about of energy dissipation and critical speed of granular
flow in a rotating cylinder.Wang (2002) investigated axi-symmetric wave propagation in a cylinder coated with a piezoelectric
layer.Barshinger (2001) studied about guided waves in pipes with viscoelastic coatings.Mahesh and Selvamani (2020) investigated
bending analysis of generalized thermoelastic waves in a multilayered cylinder using theory of dual phase lagging.
The present paper, DPL theory is used to study the influence of gravity and rotation on piezo-thermoelastic cylinder with thin
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film coated.The outer surface area of the cylinder is coated by a perfectly conducting material.The equation of displacement
components, temperature and electric are obtained using linear theory of elasticity. The computed non-dimensional frequency is
presented in the form of dispersion curves against various physical variables. Adhesive layer LEMV is compared with Carbon
Fiber Reinforced Polymer (CFRP) in presence of gravity and rotation.

2 PROBLEM FORMULATION

We deal with a homogeneous transversely isotropous thermally and electrically conducting composite multilayered hollow cylinder
of limitless length with constant temperature T0 in an unvaried state at the beginning. Cylinder rotating uniformly with an angular
rate a couple of fastened axis in area with angular velocity Ω. In cylindrical coordinates (r, θ, z), the equations of motion within
the absence of body force and as well as the outcome and centripetal forces are:Selvamani and Mahesh (2019)
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l
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The solutions of Equations (1) is considered in the form

ul = Ul
,r exp {i(kz+ pt)} (2a)
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Where, ul,wl, ϕl,Tl are displacement potentials, k denotes wave number, p denotes angular frequency and i =
√
−1.We introduce

the non dimensional quantities x = r
a , ε = ka, c = ρp, ’a’ denotes geometrical parameter of the composite hollow cylinder.

c̄11 = c11/c44, c̄13 = c13/c44, c̄33 = c33/c44, ˉc66 = c66/c44, β̄ = β1/β3, k̄i =
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1
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Substituting the Equation (2) in Equation (1) we obtain
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The above relation reformulate as follows
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Equation (4), reformulated as the following form

(A∇8 + B∇6 + C∇4 + D∇2 + E)(Ul,Wl, El,Tl)T = 0 (5)

The solution of Equation (5) is obtained as

Ul =

4∑

j=1

[Aj Jn(αj x) + Bj yn(αj x)], (6a)

Wl =

4∑

j=1

alj[Aj Jn(αj x) + Bj yn(αj x), (6b)

El =

4∑
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blj[Aj Jn(αj x) + Bj yn(αj x)], (6c)

Tl =
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clj[Aj Jn(αj x) + Bj yn(αj x)], (6d)

The values alj, b
l
j, c

l
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j
l
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j
l
ax) and denotes the Bessel functions first kind of order n.

Here (αliax) > 0, for (i = 1, 2, 3, 4) are the zeros of algebraic equation
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3 EQUATION OF MOTION FOR LINEAR ELASTIC MATERIALS WITH VOIDS LEMV

The equations of motion for isotropic LEMV materials are given as Cowin and Puri (1983)

(λ + 2μ)(u,rr + r−1u,r − r−2u) + μu,zz + (λ + μ)w,zz + βE,r = ρu,tt (8a)

(λ + μ)(u,rz + r−1u,z) + μ(w,rr + r−1w,r ) + (λ + 2μ)w,zz + βE,z = ρw,tt (8b)

−β(u,r + r−1u) − βw,z + α(E,rr + r−1E,r + φ,zz) − δkE,tt − ωE,t − ξE = 0 (8c)

u,v,w represents displacements components along r, θ, and z directions α, β, ξ, ω and k are LEMV material constants characterizing
the core in the equilibrated inertial state,ρ is the density and λ, μ are the lame constants and ℵ is the new kinematical variable
associated with another material without voids. The stress in the LEMV core materials are

σ,rr = (λ + 2μ)u,r + λr
−1u+ λw,z + βφ

σ,rz = μ(u,t + w,r )

The solution of for (8) is taken as

u = U,r exp i(kz+ pt) (9a)

w = (
i
h
)W exp i(kz+ pt) (9b)

E =(
1
h2

)E exp i(kz+ pt) (9c)

The above solution in (9) and nondimensionl variables x and ε, equation can be reduced as
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ρ1 (ch)2 k̄ − ᾱε2 − iω̄(ch) − ξ̄

16



R.Selvamani,S.Mahesh Tech. Mech., Vol. 41, Is. 1, (2021), 14–23

The Equation (10) can be specified as,

(∇6 + P∇4 + Q∇2 + R)(U,W, E) = 0 (11)

Thus the solution of Equation (11) is as follows,

U =

3∑

j=1

[Aj J0(αj x) + Bj y0(αj x)] (12a)

W =

3∑

j=1

aj[Aj J0(αj x) + Bj y0(αj x)], (12b)

E =

3∑

j=1

bj[Aj J0(αj x) + Bj y0(αj x)] (12c)

(αj x)2 are zeros of the equation when replacing ∇2 = −(αj x)2. The arbitrary constant aj and bj are obtained from

M2∇
2 + (μ̄∇2 + M4)aj + M5bj = 0

−M3∇
2 + M5aj + (α∇2 + M6)bj = 0

For the governing equation of CFRP core material, we assume void volume fraction E = 0, and the lame’s constants as

λ = c12, μ =
c11 − c12

2
in the Equation(8) .

4 BOUNDARY CONDITIONS AND FREQUENCY EQUATIONS

In this problem, the free axisymmetric vibration of transversely isotropic piezoelectric viscothermoelastic multilayered composite
LEMV /CFRP cylinder coated with thin film is considered. For the coated surface, the mechanical boundary conditions can be
written as

σ,r j = −δ
′

jb2μ
′
h
′
[(

3λ
′
+ 2μ

′

λ
′
+ 2μ′

)(ur )b,ab] + 2h
′
ρ
′
(urr )j (13)

and the shorted electrical boundary condition is E = 0 where λ,μ,ρ and h are Lames constants, density, thickness of the coated
material, respectively, δjb is the Kronecker delta function in which a,b takes the value of θ and z,and j takes r,θ and z.In order
to get the axisymmetric waves a,b can takes only z.Then the transformed boundary conditions along axisymmetric direction is
taken as follows
The frequency equations can be obtained for the following boundary condition

(i) On the traction free inner surface

σl
rr = σl

rz = El = Tl = 0 With l = 1.

(ii) On the traction free outer surface
σl
rr = 2h

′
ρ
′
ur,tt

σl
rz = −2h

′
μ
′
G2w,zz + 2h

′
ρ
′
wtt , El = Tl = 0 With l = 3. where G =

1+c
′
12

c
′
11

(iii) At the interface
σl
rr = σrr ;σl

rz = σrz ; El = Tl = Dl = 0

Substituting the above boundary condition we obtained as a 22 × 22 determinant equation

|(Yi j )| = 0, (i, j = 1, 2, 3, ..., 22) (14)

At x = x0 where j= 1, 2, 3, 4

Y1j = 2 ˉc66

(
α1
j

x0

)

J1(α
l
j x0) − [(αlja)

2 ˉc11 + ζ ˉc13alj + ē31ζb
l
j + β̄c

l
j]J0(α

l
jax0)

Y2j = (ζ + a1
j + ē15blj)(α

l
j)J1(α

l
j x0)

Y3j = (ζ + aj + ē15bj)[nJn(α
1
j ax1) − (αjax)Jn+1(α

1
j ax1)]

Y4, j = (ē15ζaj − ˉε11bj)[nJn(α
1
j ax1) − (α1

j ax1)Jn+1(α
1
j ax1)]
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And the other nonzero elements Y1, j+4,Y2, j+4,Y3, j+4 and Y4, j+4 are obtained by replacing J0 by J1 and Y0 by Y1.
At x = x1

Y5j = 2c̄66

αlj

x1
J1(α

1
j x1) −

[
(αlja)

2c̄11 + ζ c̄13alj + ē31ζb
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]
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l
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αj

x1
)J1(αx1) +

{
−(λ̄ + μ̄)(αj)

2 + β̄bj − λ̄ζaj

}
]J0(αj x1)

Y6j = (ζ + a1
j + ē15blj)(α

l
j)J1(α

l
jax1)

Y6, j+8 = −μ̄(ζ + aj)(αj)J1(αj x1)

Y7j = (αlj)J1(α
l
j x1)

Y7, j+8 = −(αj)J1(α
l
j x1)

Y8j = alj J0(α
l
j x1)

Y8, j+8 = −alj J0(α
l
j x1)

Y9j = blj J0(α
l
j x + 0)

Y10j = ej(αj)J1(α
l
j x1)

Y11j =
clj
x1

J0(α
l
j x1) − (αlj)J1(α

l
j x1)

and the remaning nonzero element at the interfaces x = x1 can be obtained on replacing J0 by J1 and Y0 by Y1 in the above
elements. They are Yi, j+4,Yi, j+8,Yi, j+11,Yi, j+14, (i = 5, 6, 7, 8) and Y9, j+4,Y10, j+4,Y11, j+4, .At the interface x = x2, nonzero elements
along the following rows Yi j ,(i = 12, 13, ..., 18) and ( j = 8, 9, ....20) are obtained on replacing x1 by x2 and superscript 1 by 2 in
order. Similarly, at the outer surface x = x3, the nonzero elements Yi j, (i = 19, 20, 21, 22) and ( j = 14, 15, ...22).

5 NUMERICAL DISCUSSION

The frequency equation is numerically carried out for the material CdSe and their material properties are given below:Mahesh
and Selvamani (2020)

C11 = 7.41 × 1010Nm−2,C12 = 4.52 × 1010Nm−2, C13 = 3.93 × 1010Nm−2, C33 = 8.36 × 1010Nm−2, C44 = 1.32 × 1010Nm−2,
T0 = 298K ,ρ = 5504kgm−3, CT = 260JKg−1K−1, e13 = −0.160Cm−2, e33 = 0.347Cm−2, e15 = −0.138Cm−2, β1 = β3 =

0.621×106Nk−1m−2 , P3 = −2.94×106Ck−1m−2, K1 = K3 = 9Wm−1K−1 ε11 = 8.26×10−11C2N−1m−2 τq = 0.9342×10−12s,τq =

0.9342 × 10−12s.
For the gold material ρ

′
= 19.283g.cm−3 , λ

′
= 1.63 × 1010N.m−2, μ

′
= 0.42 × 1010N.m−2.

Eventually, in order to improved appraise the outcomes, effect of thermoelasticity theories on the non dimensional frequen-
cies in the hollow cylinder are obtained for the traction free surfaces with continuity condition at the interfaces Nelson and
Karthikeyan (2008) . The results relating to the thin film coated composite hollow circular cylinder together with LEMV/CFRP
using LS theory in this paper are good agreement with those relating to the hollow cylinder of the previous references it shown in
Table 1 . Also, the frequencies nature for variation of wave number in thermoelasticity theories maintaining same nature in both
studies.

Table 1 Comparison of dimensionless frequency distribution of hollow cylinder and hollow cylinder with thin film coated
against the increasing value of wave number

Wave number Nelson and Karthikeyan (2008) wave number Present study

Non Dimensional
Frequency

0.2 0.01999 0.2 0.02199
0.6 0.6000 0.6 0.7666
1.2 1.2000 1.2 1.3866
1.8 1.800 1.8 1.9587
2.4 2.400 2.4 2.5381
3.0 3.000 3.0 3.1424

Figure 1 depicts the variety of non-dimensional frequency against wave number in the casings of the L-S hypothesis and the DPL
model with presence and absences of gravity .Initially, whenever the wave number are in a lower level automatically the frequencies
increases. When the wave number increases then the frequencies reduced. The impact of gravity is makes significances impact
in both L-S and DPL Theory.Figure 2 portrays the appropriation of the non-dimensional frequency against wave number in the
existences and absents of rotation. It shows that this frequency part pitifully relies upon revolution. The supreme estimation
of this Non dimensional Frequency part for L-S is expanding, and Non-dimensional Frequency esteems are expanding in lower
estimations of wave number and diminishing the rest of the scope of wave number in DPL. From this observation the impact of
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Fig. 1: Distribution of non dimensional frequency against the wave number with and without of gravity.

Fig. 2: Distribution of non-dimensional frequency against the wave number with and without of rotation.

rotation is makes significance impact in both L-S and DPL Theory. Figure 3 shows that within the sight of gravity the estimations
of the temperature T in the two models decay bit by bit and quickly with the expansion of wave number. However, without gravity
the estimations of T decay till achieving a specific neighborhood with least worth in the point which inclined to accomplish a
nearby most extreme incentive before diminishing to bring down the qualities. Its shows that the role of gravity in temperature
change against wavenumber in both L-S theory and DPL Theory, especially in DPL theory gravity creates more impact. Figure
4 represents the conduct of temperature T against the wave number. While considering the impact of rotation, it remains in
negligible position. The nature of temperature in L-S is monotonic and diminishing to least esteem and it is littler than that of
an acquired from DPL method in the underlying stage and afterward remains to be enormous qualities to the wave number. Its
observe that the role of rotation in temperature change against wavenumber in both L-S theory and DPL Theory, Especially in
DPL theory gravity creates more impact.
Figure 5 depicts the nature of the electric potential Component in the presence of both L-S hypothesis and DPL model. In the
existences and nonexistence of gravity the component gets increasing symmetrically to lowest values of wave number and then
follows to a constant nature for highest range of wave number. The impact of gravity here is negligible.Figures 6 exhibits the
distributions with wave number of the electrical potential in the presences and absences of rotation . In both DPL and L-S theory
the electric potential remains in a standard position without any changes in the presences and absences of rotation. The effect
of rotation is not significant in this case, and the electric potential components gradually increasing for larger values of wave
number.Figures 7 and 8 exhibits the 3D plots of the thermal damping in LEMV and CFRP layers for various values of N using
DPL theory in the presences of gravity and Rotation.

Figures 9-11 represent the propagation of electric displacement with respect to the thickness of the coated layer with different

Fig. 3: Distribution of temperature against the wave number in the with and without of gravity.
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Fig. 4: Distribution of temperature against the wave number with and without of rotation.

Fig. 5: Distribution of electric potential against the wave number with and without of gravity.

Fig. 6: Distribution of electric potential against the wave number in the absence and presence of rotation.
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Fig. 7: Distribution of thermal damping against the wave number in the various values of LEMV (N) [g=9.8,Ω = 0.5].

Fig. 8: Distribution of thermal damping against the wave number in the various values of CFRP (N) [g=9.8,Ω=0.5.

Fig. 9: Variation of electric displacement versus thickness of the coating material h
′
for [g=9.8,Ω=0]

.
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Fig. 10: Variation of electric displacement versus thickness of the coating material for [g=9.8,Ω=0.2].

Fig. 11: Variation of electric displacement versus thickness of the coating material h
′
for [g=9.8,Ω=0.5].

rotational speeds. Whenever the thickness of the cylinder increases the electric displacement is decreasing and again increasing
and travels in the wave propagation. Also, it is noticed in all the figures that the trend of the curve is oscillating when the rotational
speed increases. These trends of the curves admit the elastic properties of the solid due to rotational effect and coating of the
material.

6 Conclusion

The fundamental motivation behind the current work is to explore the impact of gravitation and turning power on a piezo-
thermoelastic cylinder within DPL model and how they make a fundamental job in expanding or diminishing the adequacy of
the diverse physical amounts. The outcomes acquired by applying both of the LâĂS hypothesis what’s more, DPL model are
extremely near one another aside from in deciding one of the segments of the electric dislodging where the outcomes contrast and
when all is said in done the impact of the nearness of gravity is to debilitate the supreme qualities of the physical amounts with
the exception of on account of the equivalent part of the electric relocation. Similarly the results of thin film coated multi layer
LEMV/CFRP cylinders are also studied. In this manner also discussed thermal damping in LEMV/CFRP layers for DPL model.
This result may be useful of various fields of engineering. Especially in Light weight and Heavy strength material manufacturing
industries and Production engineering fields.
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