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Abstract: In this paper, a two-dimensional cutting problem is considered 
in which a single plate (large object) has to be cut down into a set of small 
items of maximal value. As opposed to standard cutting problems, the 
large object contains a defect, which must not be covered by a small item. 
The problem is represented by means of an AND/OR-graph, and a Branch 
& Bound procedure (including heuristic modifications for speeding up the 
search process) is introduced for its exact solution. The proposed method 
is evaluated in a series of numerical experiments that are run on problem 
instances taken from the literature, as well as on randomly generated 
instances.  
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1 Introduction 

From the late 80’s onwards, the number of publications in the area of cutting and 
packing has grown rapidly. However, in the first place, authors tend to concentrate on 
developing models and methods for standard problems, while important real-world 
conditions are only rarely taken into consideration. A typical, often neglected aspect 
is that the material, which has to be cut down, contains a defect. By simply ignoring 
the defect, standard methods will only provide sub-optimal solutions.  
Therefore, in this paper, a solution approach will be presented that will allow for tak-
ing into account material which contains a defect. More precisely, a two-dimensional 
cutting problem is considered, in which a single plate (large object) has to be cut 
down into a (weakly heterogeneous) set of small items, which are in unlimited de-
mand. The large plate contains a defect, all cuts are of the guillotine type, and the 
goal is to maximize the value of the small items provided. 
The remaining part of this paper is organized as follows: In section 2, the problem 
under consideration will be defined and described in detail; furthermore, a literature 
review about related cutting problems with and also without defects will be given. In 
section 3, the respective two-dimensional cutting problem without a defect will be 
discussed. An AND/OR-graph representation, as well as a Branch&Bound procedure, 
will be described which have been presented earlier in the literature for the solution of 
this problem. In section 4, this approach will be extended to the case in which the 
plate contains a defect. In order to evaluate the proposed approach, a series of nu-
merical experiments have been carried out, in which it was run on problem data 
taken from the literature and data generated randomly. The set-up of the experi-
ments, as well as the implementation of the solution method will be outlined in sec-
tion 5. Section 6 presents and discusses the results from the experiments. The paper 
concludes with an outlook on future work in section 7. 

2 Fundamentals 

2.1 Problem Definition and Characterization 

According to the typology of Wäscher, Haußner, and Schumann (2007) the cutting 
problem to be discussed in this paper can be categorized as a variant of the uncon-
strained, two-dimensional, rectangular, guillotineable-layout Single Large Object 
Placement Problem (SLOPP). 
The basic underlying cutting problem is characterized by a set of small items (re-
quired rectangles), which have to be laid out on a single large object (stock rectangle, 
stock plate) of given dimensions in a way that the small items do not overlap and lie 
entirely within the large object. Any description of such a layout is called a cutting 
pattern.  
The small items have to be laid out orthogonally, i.e. in the cutting pattern their edges 
must be parallel to the edges of the large object, and their orientation is fixed (they 
cannot be rotated). Furthermore, we impose a guillotine constraint on the cutting 
pattern, i.e., all small items must be obtainable by a sequence of cuts, each of which 
dissecting a rectangle (the original large object or a rectangle resulting from a pre-
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vious cut) into two new rectangles (guillotineable layout).  The number of stages that 
is necessary to cut all items is not restricted.  
The assortment of the small items is weakly heterogeneous; the items can be 
grouped into relatively few classes (types) in which the items are of identical size. 
The number of times each item type is duplicated in the cutting pattern is not limited 
(unconstrained problem), and it may happen that an item type does not appear in the 
pattern at all. In addition, the orientation of each item type is fixed, i.e. it may not be 
rotated by 90° in order to be laid out on the large object. Each small item type has a 
particular value, and – since it is not possible to accommodate all small items in the 
large object – one wants to maximize the total value of the small items in the cutting 
pattern. 
In addition to these basic features which define the unconstrained, two-dimensional, 
rectangular, guillotineable-layout SLOPP (2D_UG_SLOPP), we now assume that the 
stock has a (single) defect, i.e. there is a specific region (defined in two dimensions) 
of the plate, to which no small item must be assigned. More precisely, in the cutting 
pattern to be determined, no small item must overlap with this defective region. Even 
though the defect may be of arbitrary shape, we assume that it can be represented 
by a rectangle, whose edges run in parallel to the edges of the stock plate (see 
Figure 1).  

xd

yd

wd

ld

 

Figure 1: Representation of the defect 

The two-dimensional SLOPP is a NP-hard problem since it is a generalization of the 
classic (one-dimensional) Single Knapsack Problem, which is known to be NP-hard 
(Karp 1972). Furthermore, also the 2D_UG_SLOPP with a single defect is NP-hard 
since it is a generalization of the two-dimensional SLOPP.  

2.2 Formal Representation 

Let iv  denote the value and (li, wi) the dimensions of an item of type i (i = 1, …, m), 
and ai the number of times an item of type i is assigned to the stock plate, then the 
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unconstrained two-dimensional, rectangular, guillotineable-layout SLOPP can be rep-
resented as follows (see Morabito, Arenales, and Arcaro 1992):   

1

1

max

s. t. ( ,..., ) corresponds to a feasible cutting pattern.

m

i i
i

m

v v a

a a
�

� ��    (1) 

1( ,..., ) ma a is said to correspond to a feasible cutting pattern if item type i (i = 1, …, m) 
can be laid out ai times an on the stock plate in a way that all the above-mentioned 
constraints are satisfied. A more precise, quite complex representation of these con-
straints (in particular the guillotineable-layout constraint) has been given by Mes-
saoud, Chu, and Espinouse (2008); we will not go into details here because such a 
formal representation is not necessary for the presentation of our approach.  

2.3 Literature Review 

The 2D_UG_SLOPP has been studied extensively, in particular over the last thirty 
years. Gilmore and Gomory (1966) describe an exact dynamic programming ap-
proach for two-dimensional knapsack functions, which are used as a basis to deter-
mine solutions for the2D_UG_SLOPP. An exact recursive procedure using discreti-
zation sets of all necessary locations of cuts is given by Herz (1972). Beasley 
(1985a) presents an exact recursive approach using dynamic programming, based 
on the method of Gilmore and Gomory (1966), and heuristic modification which con-
siders only a subset of the discretization sets. In the same article, a similar approach 
is used for staged problems. An exact algorithm performing a tree search on 
AND/OR-graphs, as well as a heuristic search strategy to improve computability, is 
described by Morabito, Arenales, and Arcaro (1992). A heuristic approach for the 
2D_UG_SLOPP as well as for other versions of the 2D_SLOPP can be found in the 
paper by Fayard, Hifi, and Zissimopoulos (1998); they reduce the problem to a series 
of one-dimensional knapsack problems which are solved by dynamic programming. 
For the same problem types, Alvarez-Valdés, Parajón, and Tamarit (2002) describe a 
tabu search algorithm including GRASP. G and Kang (2002) present an upper bound 
for the 2D_UG_SLOPP and also for the non-guillotineable layout type, which is cal-
culated by solving two one-dimensional knapsack problems. 
Other versions of the 2D_SLOPP have also been widely studied. Christofides and 
Whitlock (1977) present a Branch & Bound strategy to solve a guillotineable-layout 
problem exactly with upper bounds for the number of times an item type can be cut 
(constrained problem). They combine  dynamic programming and a transportation 
routine for the determination of upper bounds.  For the same problem type, Wang 
(1983) presents two algorithms that successively put together horizontal and vertical 
builds of item types to fill the large object. Christofides and Hadjiconstantinou (1995) 
present an improvement of the algorithm of Christofides and Whitlock (1977); they 
use a state-space relaxation of a dynamic programming formulation of the problem to 
calculate an upper bound required for limiting the Branch & Bound search. Morabito 
and Arenales (1996) extend the AND/OR-graph approach to solve constrained and 
staged problems, exactly and heuristically. Parada, Pradenas, Solar, and Palma 
(2002) develop a combination of a genetic algorithm and a search procedure on an 
inverted AND/OR-graph. In the article by Alvarez-Valdés, Parreño, and Tamarit 
(2005), a GRASP algorithm and a reasonable choice of its parameters are described. 
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Hifi and M’Hallah (2005) present an exact Branch & Bound algorithm including a new 
upper bound for the constrained guillotineable-layout 2D_SLOPP with two cutting 
stages. Three different upper bounds for any Branch & Bound algorithm, derived by 
LP, Knapsack and Lagrangean relaxation, are introduced in Beasley (1985c). The 
constrained, non-guillotineable layout 2D_SLOPP is considered by Beasley (1985b), 
who provides a 0-1 linear programming model  and corresponding exact depth-first 
tree search (Branch & Bound) procedure.  
In general, cutting problems with defects have only been studied rather limitedly. 
Gilmore and Gomory (1965) use linear programming on the one-dimensional and the 
two-dimensional Single Stock Size Cutting Stock Problem, and for both cases, they 
describe a recursive formula for the value of an item type where the mentioned value 
depends on its position on the large object, i.e. the large object consists of different 
qualities, one of which may be a non-usable defect. The three-staged 
2D_UG_SLOPP with multiple defects and a non-linear value function for the item 
types is considered by Hahn (1968), who describes an adaptation of the dynamic 
programming approach by Gilmore and Gomory (1966). Scheithauer and Terno 
(1988) present an improved dynamic programming solution method for the same type 
of  problem with a non-rectangular large object. Herz (1972) mentions without giving 
any details that it is possible to adapt his recursive algorithm for the 2D_UG_SLOPP 
with multiple defects.  
More extensive or specialized, less standardized problem variants have also been a 
field of research. The combined process of cutting a felled tree first into logs and then 
into lumber, considering quality and shape variations (defects) of the tree by use of a 
profile scanner, is presented by Faaland and Briggs (1984). They use a staged dy-
namic programming model to solve this problem taken from practice. A special kind 
of one-dimensional cutting problem is solved by Sarker (1988) using dynamic pro-
gramming. Here, a single large object with several punctual defects is considered, 
and the goal is to maximize the total value that can be achieved by cutting only 
through defects, under the condition that the value of a piece cut depends on its 
length and the number of contained defects. Aboudi and Barcia (1998) consider a 
one-dimensional cutting problem that occurs in paper mills – a roll of paper contain-
ing one defect is to be cut vertically into a given set of sheets; one wishes to deter-
mine a permutation of the sheets which minimizes  the length of those sheets con-
taining a defect. (The authors give a 0-1 integer programming model which can be 
relaxed (surrogate relaxation) to achieve strong bounds for a Branch & Bound 
method including several heuristics. A complex one-dimensional cutting and wrap-
ping problem in the textile industry is described by Özdamar (2000); the cutting of 
fabric lengths into shorter pieces and the sorting of those pieces into different quality 
grades depending on contained defects is solved by a simulated annealing approach 
with occasional mutations. 
An auxiliary problem, namely the one of finding all usable rectangles on a large rec-
tangle containing several pairwise disjoint defects, is solved by a constructive algo-
rithm by Twisselmann (1999). 
The 2D_UG_SLOPP with a single defect, as it is discussed in this paper, has been 
introduced into the literature by Carnieri, Mendoza, and Luppold (1993). They pre-
sent a heuristic solution based on dynamic programming, which extends the classic 
approach by Gilmore and Gomory (1963), and including a Branch & Bound search 
where the necessary bounds are calculated assuming the large object had no defect. 
The same problem type has also been studied by Vianna and Arenales (2006); we 
present an extension of their approach here. 
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3 The AND/OR-Graph Approach to the 2D_UG_SLOPP 

In this section, a summary of the AND/OR-graph approach (Morabito, Arenales and 
Arcaro 1992) to the unconstrained, two-dimensional, rectangular, guillotineable-lay-
out SLOPP (without defects) is presented, which, in short, consists of representing all 
cutting patterns as complete paths in a specific graph and enumerating them implic-
itly in order to find an optimal solution. This approach will be extended to problems 
with a single defect in Section 4.  

3.1 Guillotine Cuts and Intermediate Plates 

Applying a guillotine cut to a plate results in two new rectangles, called intermediate 
plates, which can be cut down further. The process of cutting terminates when a “fi-
nal” (required) item or a piece of waste is obtained. Consequently, any guillotineable-
layout cutting pattern can be generated just by examining the different guillotine cuts, 
which can be applied to each intermediate plate. An intermediate plate (say, plate N) 
has a certain length LN and width WN , and will be denoted by N = (LN, WN). The set 

( )M N of small items that can still be cut from N is given by 

� �� � � �( ) : :  and , {1,..., }i N i NM N i l L w W i m .     (2) 

Herz (1972) has shown that, without loss of generality, the positions of the cuts on 
the large object can be taken as non-negative integer combinations of the dimen-
sions of the small items, i.e. from the set  

0 0
1

: , , 0 and integer, 1,...,
m

i i i
i

X x x l l x L l i m	 	
�


 �
� � � � � 
 �� �

� �
�   (3) 

for the vertical cuts and from the set 

0 0
1

: , , 0 and integer, 1,...,
m

i i i
i

Y y y w w y W w i m� �
�


 �
� � � � � 
 �� �

� �
�  (4) 

for the horizontal cuts, where � � � �� � � �0 0min , 1,..., ,  and min , 1,...,i il l i m w w i m . X 
and Y are called discretization sets. Likewise, the discretization sets for an intermedi-
ate plate N = (LN, WN) are given by 

0 0
( )

( ) : , , 0 and integer, ( )i i N i
i M N

X N x x l l x L l i M N	 	
�


 �
� � � � � 
 �� �

� �
�  (5) 

and 

0 0
( )

( ) : , , 0 and integer, ( )i i N i
i M N

Y N y y w w y W w i M N� �
�


 �
� � � � � 
 �� �

� �
� (6) 

which can be determined by means of the recursive formula of Christofides and 
Whitlock (1972), or by its revised version as presented in Morabito and Arenales 
(1996).  
Therefore, given an intermediate plate N = (LN, WN), a vertical cut at position             
x � X(N) produces two new plates: N1 = (x, WN) and N2 = (LN  – x, WN); a corre-
sponding formula applies to a horizontal cut y � Y(N). Although the number of inter-
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mediate plates is finite when only cuts in X and Y are considered, it can be enormous 
for a practical problem instance. 

3.2 AND/OR-Graphs 

An AND/OR-graph G = (V, E) is a special type of graph, where V is a set of nodes 
and � 1{ ,..., }sE e e  a set of directed arcs. Each arc eju links a node j to a set Su of 
nodes (in an ordinary graph the set Su consists of just one node):  

eju = (j, Su), � ,j V  Su � V. 

The nodes in Su are called successors of j, and j is called predecessor of nodes in 
the set Su. In this paper, Su will always consist of a pair � �,p q of nodes (in case of an 
AND-arc, see below), or a unit set {p} (ordinary arc leading to a final node, see be-
low). 
When following a path through the graph, one can choose between several arcs that 
emerge from a node (OR-arcs), but one has to follow both branches of the chosen 
arc (AND-arc).  An example can be seen in Figure 2 (a). This type of graph provides 
an appropriate tool for the representation of a cutting process – each node stands for 
a plate (stock or intermediate), each arc � �� ,{ , }jue j p q for a guillotine cut that sepa-
rates a plate/node j (start node of jue ), into a pair of new plates { , }p q  (end nodes of 

jue ).  

At some point throughout the cutting process, one may decide not to perform any 
further cuts on a particular plate, e.g. because the dimensions of this plate indicate 
that it has to be considered as waste, or it has the exact dimensions of a small item, 
or because the optimal cutting pattern for that plate is known. This situation can be 
represented in the AND/OR-graph by introducing an ordinary arc, called 0-cut, for 
each node j (not depicted in Figure 2 (a)), i.e. an arc eju = (j, p) that copies exactly the 
plate of node j into node p. If such an arc has been chosen in the path, no further cut 
is made on plate in node p, and p is called a final node of the path. The value of a 
final node equals 0 in case it represents waste. If the final node represents a specific 
small item i, than its value is identical with the value of i, and if the final node repre-
sents a plate for which the optimal cutting pattern is known, then its value is identical 
with the value of this pattern.  
Any cutting pattern for the large object (stock plate) can be determined from the 
AND/OR-graph as follows: Starting from the root node (stock plate), choose one and 
only one arc (AND-arc, or 0-cut arc), and from each node pointed to by this chosen 
arc choose again one and only one arc, and so on, until all visited nodes are final 
nodes. This sequence of paths is called a complete path of the AND/OR-graph, and it 
corresponds to a cutting pattern.  The broken lines of Figure 2 (a) indicate a complete 
path, which corresponds to the cutting pattern depicted in Figure 2 (b).  
The value of a complete path (or of its corresponding cutting pattern) is the sum of 
the values of all its final nodes. Therefore, problem (1) can be reformulated as the 
problem of finding a most valuable complete path in the AND/OR-graph. 
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(a)

(b)

 

Figure 2: AND/OR-graph with a particular highlighted path (a)  
and the corresponding cutting pattern (b) 

3.3 Upper and Lower Bounds  

In order to describe a scheme for the implicit enumeration of the complete paths (i.e., 
cutting patterns), we define upper and lower bounds for the value of the optimal cut-
ting pattern for a given plate N = (LN, WN). The area provides a straightforward way to 
compute an upper bound ��( )N  for the objective function value which can still be 
generated by cutting down N: 

( )

( )

( ) ( , ) max

s.t. ( )  (area utilization)

0, ( )

N N i i
i M N

i i i N N
i M N

i

N L W v a

a l w L W

a i M N

�

�

� � �

� �


 �

�

�

�� ��

 (7) 

Trivially, the optimal objective function value of problem (2) is obtained by 


 �
� � � �� �

� �
��( , ) max : ( ) .i

N N N N
i i

vL W L W i M N
l w

     (8) 

Computation of a lower bound ��( )N  for the objective function value related to a 
plate N = (LN, WN) can be based on homogeneous cutting patterns, which contain 
only small items of a single type (cf. Figure 3). 
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LN

WN

wk

lk

 

Figure 3: Homogeneous cutting pattern for plate (LN,WN), consisting of item type k 

Given a plate N = (LN, WN), the maximum number of times that item type � ( , )k kk l w  

appears in a homogeneous pattern is 
� � � �

�� � � �
� � � �

N N

k k

L W
l w

. Thus the corresponding objective 

function value is 
� � � �

� �� � � �
� � � �

N N
k

k k

L Wv
l w

, and the best homogeneous cutting pattern gives a 

lower bound for the objective function value for plate N = (LN, WN):  


 �� � � �� �� � � � �� �� � � �
� �� � � �� �

�� ��( ) ( , ) max : ( )N N
N N i

i i

L WN L W v i M N
l w

   (9) 

Computation of both upper and lower bound requires very little time, the number of 
necessary operations depends linearly on the number of small item types. In section 
4.2, we give more specific formulas to deal with defective plates. 

3.4 A Branch & Bound Algorithm 

Let ��( )N denote a lower bound and ��( )N  an upper bound, respectively, for the 
objective function value of node/plate N, and let �( )N  be the currently known best 
objective function value for node N. Of course, � ��� � ��( ) ( ) ( )N N N holds. Further-
more, let S be the set of nodes (original or intermediate plates) still to be dealt with. 
Then the following Branch & Bound procedure can be used for the determination of 
an optimal solution for the 2D_UG_SLOPP: 

1. Set � �: ( , )S L W� .  

2. Choose a node N = (LN, WN) from S and delete it from S. Set ( ) : ( )N N�� �� .  
For all possible successors N1 and N2 that can result from a vertical cut on N 
chosen from the discretization set X(N) or from a horizontal cut on N chosen 
from the discretization set Y(N), do:  

a) If N1 represents waste, i.e. M(N1)=�, then make N1 a final node; other-
wise include N1 in S. Repeat this step for N2. 
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b) If � �� �� ��1 2( ) ( ) ( )N N N  (i.e., an improved objective function value 
can be obtained by this cut), then update 1 2( ) : ( ) ( )N N N� �� �� �� ; also 
update recursively the currently known best objective function values of 
all predecessors of N up to the original plate (root node)   

c) If 
 �� �� ��1 2( ) ( ) ( )N N N  (i.e., the cut can not result in an improved ob-
jective function value), then remove N1 and N2 from S.  

3. If S is not yet empty, go back to step 2.  
4. STOP! The currently known best value for the root node is the optimal objec-

tive function value. The corresponding cutting pattern can be determined by 
identifying the complete path that provides this objective function value. 

3.5 Heuristic Modifications 

Obviously, computing times for the Branch & Bound procedure depend very much on 
the number of nodes that have to be considered, which can be enormous. Therefore, 
Morabito, Arenales, and Arcaro (1992) developed several heuristics, which are modi-
fications of the original procedure, that reduce the computing times drastically, but 
still lead to reasonably good solutions.  

Heuristic 1: Use of promising cuts only 
A cut is considered to be promising if the sum of the upper bounds of the resulting 
plates  N1 and  N2 is substantially larger than the currently known best value of N, 
that is, 	� � ��� �� �1 2( ) ( ) (1 ) ( )N N N , and if the sum of the lower bounds of the suc-
cessors is only slightly smaller or even larger than the lower bound of N, that is, 

�� � ��� �� ��1 2( ) ( ) (1 ) ( )N N N , where 	 and � are parameters to be chosen empiri-
cally.  

Heuristic 2: Heuristic search strategy 
Morabito, Arenales and Arcaro (1992) combine depth-first and hill climbing strategies. 
They arbitrarily choose a depth limit (a maximum number of successive cuts, or the 
length of the path) and compute from the root node (initial plate) the best (exact or 
heuristic) complete path not exceeding this limit, discarding all others paths (a pure 
hill-climbing search would be obtained for a depth limit of 1). Then, for the given 
depth limit, all  nodes are considered as root nodes and chosen for further investiga-
tion, that is, from each one the best complete path up to the depth limit is calculated, 
and so on. For details, see Morabito, Arenales, and Arcaro (1992) or Arenales and 
Morabito (1995). 

4 Dealing with a Single Defect 

In this section, the AND/OR-graph approach will be modified in such a way that a 
single defect on the plate can be considered explicitly. As has been noted above (see 
Figure 1), we assume that the defect d can be represented by a rectangle of length ld 
and width wd: d = (ld, wd). The location of the defect on the stock plate is indicated by 
the coordinates of its lower left corner ( , )d dx y . 
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4.1 Dimensions and Location of a Defect on an Intermediate Plate 

If a cut is performed on a defective (stock or intermediate) plate ( , )N NN L W� , we 
need to know what the dimensions of the defects are on the resulting plates and 
where they are located. The following line of argumentation will be presented for a 
vertical cut only, but holds likewise for a horizontal cut. Let the cut (chosen from the 
discretization set X) be at position z, then the dimensions of the plates N1 and N2 to 
be generated are (z, WN) and ( , )N NL z W� , respectively, i.e. 1 ( , )NN z W�  and 

2 ( , )N NN L z W� � . Figure 4 shows the possible positions of the vertical cut z in rela-
tion to the defect.  
Figure 4 (a) depicts a case in which only plate N2 will contain a defect; likewise in 
Figure 4 (c) only plate N1 will have a defect. Both plate N1 and N2 will have a defect in 
the case depicted in Figure 4 (b). Table 1 presents the size of the defects and their 
locations (indicated by the coordinates of the lower left corner) for these three cases. 

yd
xd

ld

wd

yd
xd

ld

wd

yd
xd

ld

wd

z z z
(a) (b) (c)

plate N1
cut plate N2

Figure 4: Possible positions of a vertical cut 

plate N1 plate N2 
 dimensions of 

defect 
location of 

defect 
dimensions of 

defect 
location of 

defect 
case (a) - - ( , )d dl w  ( , )d dx z y�  
case (b) ( , )d dz x w�  ( , )d dx y  ( , )d d dx l z w� �  (0, ).dy  
case (c) ( , )d dl w  ( , )d dx y  - - 

Table 1: Size and location of defects on plates N1 and N2 

4.2 Upper and Lower Bounds for a Defective Plate 

An upper bound for a node representing a plate ( , )N NN L W� with a defect of size 
( , )d dl w  can be obtained by a simple modification of the area-utilization bound (4). 
Since the useable plate area now is N N d dL W l w� , we obtain 

( ) ( , ) ( ) max : ( ) .i
N N N N d d

i i

vN L W L W l w i M N
l w


 �
� � � � �� �

� �
�� ��    (10) 
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The modification for the determination of a lower bound for a node representing a 
defective plate is less straightforward. Figure 5 and Figure 6 demonstrate why the 
objective function value of the simple homogeneous cutting pattern cannot be used 
as a reasonable lower bound any more.  

 

Figure 5: Simple homogeneous cutting pattern with items overlapping the defect 

If the calculation of the lower bound would be carried out by ignoring the items over-
lapping the defect, the bound corresponding to Figure 5 would be based on six items. 
Figure 6, on the other hand, presents a solution obtained by shifting a block of small 
items as far as possible to the right, allowing the computation of the bound to be 
based on having assigned nine items.  

 

Figure 6: Modified homogeneous cutting pattern without items overlapping the defect 

Consequently, the determination of a lower bound will be based on the identification 
of (rectangular) “non-defective regions” of maximal size. A region is called non-de-
fective if it can be obtained from N by a series of successive guillotine cuts and does 
not contain a defect. It is of maximal size if each of the guillotine cuts cannot be 
moved further towards the defect without creating a defect on this region.  
As long as the defect is not located directly adjacent to an edge of plate N, there exist 
14 different ways in which N can be partitioned into non-defective regions of maximal 
size by a series of guillotine cuts, and there are always four such regions in any parti-
tion (cf. Figure 7; the regions “on the left” of the defect are denoted by A, the ones 
“on top” by B, those “on the bottom” by C and the ones “on the right” by D.). As be-
comes evident, each of the four (maximal) regions can be rectangles of four different 
sizes (types). It goes without mentioning that some of the partitions will be degener-
ated if the defect is located adjacent to an edge of the plate.  
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(11) (14)(13)(12)
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Figure 7: The 14 different ways to divide a plate with one defect 
 into four non-defective regions of maximal size 

A lower bound for a plate N with a defect can now be computed as follows: For each 
type of non-defective region, a homogeneous cutting pattern is determined which 
provides – according to (5) – the best objective function value (across all item types 
which can be accommodated at least once by the region). This gives a lower bound 
for each type of non-defective region. Then, for each partition (cf. Figure 7), the lower 
bounds for the respective non-defective regions are added up, resulting in a lower 
bound for each partition. Finally, the lower bound for N can simply be computed as 
the maximum of the lower bounds of all 14 partitions.  
In order to determine the (maximal) homogeneous cutting patterns on the (maximal) 
non-defective regions, the dimensions of these regions have to be known. For a 
plate ( , )N NN L W� , on which the (lower left corner of the) defect of size( , )d dl w is lo-
cated in position( , )d dx y , they can be taken from Table 2.  

Regarding the computing times, it can be noted that the number of nodes in the 
AND/OR-graph may grow exponentially in the number of small items. However, the 
number of calculations needed for the determination of the lower bound at a single 
node is only linear in the number of the small items (as it is the case for the 
2D_SLOPP without a defect). Therefore, there will be no significant increase in the 
computing times if compared to the times needed for solving the problem without any 
defect. 
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type of 
non-defective region horizontal dimension vertical dimension 

A1 dx  NW  

A2 dx  N dW y�  

A3 dx  d dy w�  

A4 dx  dw  

B1 NL  � �N d dW y w� �  

B2 d dx l�  � �N d dW y w� �  

B3 N dL x�  � �N d dW y w� �  

B4 dl  � �N d dW y w� �  

C1 NL  dy  

C2 d dx l�  dy  

C3 N dL x�  dy  

C4 dl  dy  

D1 � �N d dL x l� �  NW  

D2 � �N d dL x l� �  N dW y�  

D3 � �N d dL x l� �  d dy w�  

D4 � �N d dL x l� �  dw  

Table 2: Dimensions of the 16 (maximal) non-defective regions 

5 Numerical Experiments 

In order to determine the performance of the above-described algorithm, a series of 
numerical experiments has been carried out. A first set of problem instances, which 
has also been used by Vianna and Arenales (2006) for benchmarking purposes, has 
been taken from the paper by Carnieri, Mendoza, and Luppold (1993). Even though 
this set is of rather limited size, it will be considered here since – according to the 
best of the authors’ knowledge – this is the only one related to the 2D_UG_SLOPP 
with a single defect that has been presented in the literature so far. A second, more 
substantial set of problem instances has been generated randomly.  

5.1 Data Sets 

5.1.1 The Data Set of Carnieri, Mendoza, and Luppold 

Carnieri, Mendoza and Luppold (1993) consider eight problem instances: one set of 
item types (see Table 3) combined with 8 different defects, differing with respect to 
location and size (see Table 4). For each item type and defect, the dimensions as 
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well as the relative size (percentage of area of the large object) are given. The di-
mensions of the large object are (L, W) = (200, 100).  

item type  
i 

length  
li 

width  
wi 

value  
vi 

relative size 
[%] 

1 40 30 10   6.00 

2 68 26 12   8.84 

3 50 20 8   5.00 

4 60 35 18 10.50 

5 45 22 9   4.95 

Table 3: Item types of the data set of Carnieri, Mendoza, and Luppold (1993) 

defect  
no. 

position of  
lower left corner

(xd,yd) 
dimensions 

(ld,wd) 
relative size 

[%] 

1 (50,100) (4,5) 0.10 

2 (40,100) (4,5) 0.10 

3 (60,100) (6,5) 0.15 

4 (20,125) (10,7) 0.35 

5 (71,125) (8,7) 0.28 

6 (30,30) (10,10) 0.50 

7 (40,80) (18,30) 2.70 

8 (40,80) (18,38) 3.42 

Table 4: Defects of the data set of Carnieri, Mendoza, and Luppold (1993) 

It should be noted that the values of the item types are not proportional to their area 
(weighted version of the 2D_UG_SLOPP) and that the item types are quite large 
w.r.t. the size of the large object. The defects, on the other hand, appear to be rather 
small. 

5.1.2 Randomly Generated Data Sets 

Identification of Problem Parameters 

The second set of problem instances refers to the unweighted version of the 
2D_UG_SLOPP, i.e. it has been assumed that the values (in monetary units) of all 
item types are proportional to their sizes (in square units). Under this assumption, 
any instance of the 2D_UG_SLOPP with a single defect is completely characterized 
by the vector 

1 1 2 2(( , ),  ( , ),  ( , ),...,  ( , ),  ( , ),  ( , )).m m d d d dL W l w l w l w l w x y  
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In other words, in order to obtain a test problem instance,  
- the dimensions of the large object (L,W), 
- the dimensions of the item types (li,wi), i = 1,..,m, 
- the number m of different item types to be placed,    
- the dimensions of the defect (ld,wd), and 
- the location of the defect (xd,yd), 

(problem parameters) have to be specified. Since each instance contains information 
about the dimensions of the large object, about the dimensions of the defect and 
about its location, it seems reasonable to refer to m, the number of small item types, 
as the problem size. 

Parameter Specification 

In all experiments, the size of the large object has been fixed to 360,000 square units 
(sq. u.), for which three different combinations of length and width have been consid-
ered (see Table 5).    

(L,W) (600,600) (900,400) (1200,300) 
length-to-width 

ratio 1:1 2.25:1 4:1 

Table 5: Dimensions of the large object 

With respect to the size of the item types in relation to the large object, three classes 
have been distinguished: item types of “small” size (max. 1% of the area of the large 
object, i.e. 1-3,600 square units), “large” size (3-5% of the area of the large object, 
i.e. 10,800-18,000 square units), and “both small and large” size (max. 5% of the 
area of the large object, i.e. 1-18,000 square units). 

The actual size ai (in sq. u.) of each item type i was considered as the realization ˆia  
of a random variable, which is generated from the respective size range. ˆia  provides 
the basis for the determination of the corresponding dimensions (length il , width iw ) 
of i. In order to avoid “degenerated” item sets (i.e. sets which contain very long and 
narrow items in the first place), the following procedure has been chosen (for details 
see Neidlein and Wäscher 2008): At first, from the interval�  0.1, 0.9  a realization îb  of 
a random variable bi for the relative length of i is determined, which is defined in the 
following way:  

i
i

i i

lb
l w

�
�

.          (11) 

Then approximate values îl  and ˆ iw  for il  and iw , respectively, are calculated as fol-
lows: 

ˆˆˆ
ˆ1

i i
i

i

a bl
b

�
�

 and 
ˆˆ
ˆ
i

i
i

aw
l

� .        (12) 
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In order to obtain il  and iw , these values are rounded down: 

ˆ ˆ,i i i il l w w� �� � � �� �� �          (13) 

This provides an item type of size i i ia l w� � , close to the value ˆia  originally gener-
ated. By limiting bi to the interval 

2

2 2

ˆ
ˆ ˆ

i
i

i i

a Lb
a W a L

� �
� �

        (14) 

it is guaranteed that every item type fits into the large object, i.e. that il  will not ex-
ceed L and iw  will not exceed W. 

� �,d dl w  (60,60) (105,35) (35,105) small 
(~3,600 sq. u.) area [sq. u.] 3,600 3,675 3,675 

� �,d dl w  (120,120) (210,70) (70,210) medium 
(~14,400 sq. u.) area [sq. u.] 14,400 14,700 14,700 

� �,d dl w  (170,170) (285,95) (95,285) large 
(~28,800 sq. u.) area [sq. u.] 28,900 27,075 27,075 

 length-to-width 
ratio 1:1 3:1 1:3 

Table 6: Types of the defect 

The number of different item types to be placed on the large object was chosen to be 
5 and 10.  
The size of the defect was fixed to (approximately) 1% (3,600 sq. u.), 4% (14,400 sq. 
u.) and 8% (28,800 sq. u.) of the area of the large object. Small deviations from the 
exact percentage values have been permitted in order to allow for a better numerical 
manageability of the length-to-width ratios. For each of these size classes, three dif-
ferent combinations of lengths and widths have been introduced, which shape the 
defect as a square, as a “lying” (i.e. horizontal) rectangle, and as a “standing” (i.e. 
vertical) rectangle. The exact size and dimensions can be taken from Table 6.  

(8.1)

(8.2)

Figure 8: Sizes and shapes of large objects (8.1) and defects (8.2) 
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The position ( , )d dx y  of the lower left corner of the defect on the large object was 
generated randomly in the intervals �  0, dL l�  for dx  and �  0, dW w�  for dy . Figure 8 
gives an illustration of the sizes and shapes of the large objects and the defects.  

Basic Problem Classes and Problem Instances 

The properties introduced above for the dimensions of the large object (3), for the 
size of the small item types (3), and the size of the problem (2) define (3 x 3 x 2 =) 18 
classes of problem data (basic problem classes). For each of these classes, 30 
instances have been generated by means of an adaptation of the problem generator 
of Neidlein and Wäscher (2008).  
Each instance of a basic problem class has been combined with each of the nine 
different defect dimensions defined in Table 6. Thus, in total (18 x 30 x 9 =) 4860 
problem instances have been included in the numerical experiments. The instances 
are available at www.ovgu.de/mansci/materials. 

5.2 Implementation of the Algorithm 

As has been described in section 3.5, in order to speed up the algorithm, a heuristic 
which considers promising cuts only is used. The values of the parameters 	  and �  
have both been set to 0.1. The depth-first / hill-climbing strategy is used with a depth 
bound of three. The algorithm was encoded using Borland Pascal Version 7. All 
experiments were run under Windows XP on a microcomputer with 1.7 GHz core 
memory clock speed and 512 MB RAM. 

6 Computational Results 

6.1 Instances of Carnieri, Mendoza, and Luppold 

Since this data set contains instances of the weighted version of the 2D_UG_SLOPP, 
the quality of a solution can be measured by the total value of the small items cut 
from the large object. Table 7 presents the results obtained by Carnieri, Mendoza, 
and Luppold (1993, p. 71), as well as the results and computing times of the 
AND/OR-graph approach presented in this paper. For all instances, the computing 
times of the AND/OR-graph approach turned out to be very reasonable. Please note 
that Carnieri, Mendoza, and Luppold (1993) do not report any computing times in 
their paper.  
The AND/OR-graph approach provided better solutions for two instances, while 
equally good solutions were found for the remaining ones. In additional tests we 
modified the heuristic search parameters to allow for a deeper AND/OR-graph search 
– and thus allocated more computing time to the algorithm – in order to prove that the 
obtained solutions were optimal. However, neither did the algorithm terminate at an 
optimal solution, nor was any further improvement of the objective function value 
achieved for any of the problem instances. We believe that the obtained solutions are 
optimal, even though we are not able to prove it. 
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Carnieri et al. (1993) AND/OR-graph approach instance  
no. total value of items 

cut 
total value of 

items cut 
computing 
time [sec] 

1 166 166 0.52 
2 160 160 0.77 
3 162 162 1.77 
4 158 160 0.27 
5 164 164 4.11 
6 164 164 1.44 
7 157 158 1.07 
8 154 154 0.50 

Table 7: Total values of items cut and computing times for the instances  
of Carnieri, Mendoza, and Luppold (1993) 

6.2 Randomly Generated Instances 

We note that – under the assumptions made – the size of the (non-defective) area of 
the large object which is not covered by small items (waste, trim loss) can be used as 
a measure for the quality of each solution. Since the optimal solutions are not known, 
the waste is reported as a percentage of the useable area of the large object, i.e. of 

d dLW l w� . 

Across all problem instances, an average percentage of waste of 5.0333% was ob-
served; the average computing time per instance amounted to 10.25 sec.  
Table 8 provides waste and computing times for the 18 basic problem classes (con-
taining 270 instances each) in greater detail. It can already be seen that the waste 
decreases (i.e. the solution quality improves) and computing times increase with an 
increase in the number of item types. This observation will be confirmed by the sub-
sequent analysis.  
In Table 9, results from Table 8 have been aggregated with respect to the number of 
item types and the size of the item types. Additionally, the number of instances is 
depicted for which zero-waste solutions have been obtained. 2,673 instances are 
contained in each of the two problem classes of Table 9.1, and 1,782 instances in 
each of the three problem classes of Table 9.2. Computing times increase drastically 
with an increasing number of item types, while the solution quality (both in terms of 
waste per instance and the number of zero-waste instances per class) improves (cf. 
Table 9.1). The latter observation can be explained easily by the fact that a larger 
number of item types allows for a larger number of combinations of item types (cut-
ting patterns), which – on the other hand – take more time to evaluate. The same 
reasoning can be put forward with respect to the observation that computing times 
are longer and solution quality is better for small item types instead of larger ones (cf. 
Table 9.2). 
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main 
problem 

class  
no. 

dimensions 
of large 
object 
(L,W) 

no. of item 
types 

n 
size of item 

types 
waste  

[%] 
computing 

time  
[sec] 

1 (600,600) 5 small 1,472 9,63 
2 (600,600) 5 small/large 5,042 7,48 
3 (600,600) 5 large 9,117 3,88 
4 (600,600) 10 small 0,713 18,93 
5 (600,600) 10 small/large 3,661 17,92 
6 (600,600) 10 large 7,752 10,59 
7 (900,400) 5 small 1,600 9,49 
8 (900,400) 5 small/large 4,967 6,65 
9 (900,400) 5 large 10,588 3,84 
10 (900,400) 10 small 0,974 19,85 
11 (900,400) 10 small/large 4,045 14,33 
12 (900,400) 10 large 7,732 9,58 
13 (1200,300) 5 small 1,811 8,17 
14 (1200,300) 5 small/large 7,636 4,74 
15 (1200,300) 5 large 10,839 2,82 
16 (1200,300) 10 small 0,991 18,17 
17 (1200,300) 10 small/large 4,219 11,61 
18 (1200,300) 10 large 7,442 6,84 

Table 8: Waste and computing times (averages per instance)  
for the basic problem classes 

 (9.1)    
no. of item types 

n 
waste  

[%] 
computing time 

[sec] 
no. of zero-

waste instances 
5 5,897 6,30 2 

10 4,170 14,20 19 

(9.2)    
size of item 

types 
waste  

[%] 
computing time 

[sec] 
no. of zero-

waste instances 
small 1,260 14,04 18 

small/large 4,928 10,46 3 

large 8,912 6,26 0 

Table 9: Waste and computing times (averages per instance) for  
different numbers of item types (9.1) and different sizes of item types (9.2) 
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We note that – in contrast to the results reported so far – the dimensions of the large 
object appear to have only very influence. Waste increases slightly as the shape of 
the large object becomes less quadratic, computing times are almost constant (cf. 
Table 10). 

dimensions 
of large 
object 
(L,W) 

waste  
[%] 

computing 
time  
[sec] 

(600,600) 4,626 10,25 
(900,400) 4,984 11,41 
(1200,300) 5,490 10,62 

Table 10: Waste and computing times (averages per instance) for the different 
dimensions of the large objects 

The picture looks slightly different if the data (concerning the waste) is further differ-
entiated (see Table 11). The amount of waste is affected by the problem size and the 
size of the item types in the first place, but it also tends to grow slightly with a more 
rectangular, less quadratic shape of the large object. It has to be mentioned, how-
ever, that the outliers represented by the problem classes “number of item types: 5; 
dimensions of large object: (1,200, 300)” and “size of item types: small/large; dimen-
sions of large object: (1,200, 300)” are due to a few single instances only which yield 
an extraordinarily large amount of waste.  

(11.1)    

dimensions of large object (L,W) number of 
item types 

n (600,600) (900,400) (1200,300) 

5 5,210 5,718 6,762 

10 4,042 4,250 4,218 

(11.2)    

dimensions of large object (L,W) size of    
item types (600,600) (900,400) (1200,300) 

small 1,092 1,287 1,401 

small/large 4,352 4,506 5,928 

large 8,434 9,160 9,140 

Table 11: Percentage of waste (averages per instance) dependent on the 
dimensions of the large object and the number of item types (11.1)  

and the size of the item types (11.2) 

Table 12 and Table 13 investigate the influence of the defect on computing times and 
solution quality. Table 12 shows the detailed results for the nine different defect 
types, whereas Table 13 (in which the defects are sorted in the same sequence as in 
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Figure 8) gives an aggregated view regarding the sizes (Table 13.1)) and shapes 
(Table 13.2)) of the defect. 

defect waste  
[%] 

computing  
time  
[sec] 

small quadratic 3,929 10,72 

small horizontal 4,368 10,34 

small vertical 3,704 10,75 

medium quadratic 4,994 10,57 

medium horizontal 6,016 10,38 

medium vertical 4,578 10,27 

large quadratic 5,879 10,23 

large horizontal 7,211 9,65 

large vertical 4,622 9,35 

Table 12: Waste and computing times (averages per instance) for the different 
dimensions of the defect 

The computing times are hardly affected by the different sizes and shapes of the de-
fect, even though they tend to be slightly smaller for large defects because fewer 
possible cutting patterns have to be investigated.  As could have been expected, a 
small defect yields less waste than a large defect (cf. Table 13.1) since it allows for a 
larger number of cutting patterns. The small amount of waste related to a vertical 
defect (cf. Table 13.2) is due to the fact that all large objects which are considered 
here are either quadratic or of horizontal shape. This implies – except for the quad-
ratic large object – that a vertical defect virtually divides the large object into two de-
fect-free new plates (see Figure 9), for which a large number of feasible combinations 
of small items (i.e. cutting patterns) exists. A horizontal defect, on the other hand, 
leaves narrow defect-free regions above and below the defect and only narrow de-
fect-free regions on the sides of the defect, for all of which the number of feasible 
cutting patterns is significantly smaller. Both effects compensate each other on a 
quadratic large object. 

(13.1)    (13.2)   

size of  
defect 

waste  
[%] 

computing 
time  
[sec] 

shape of 
defect 

waste  
[%] 

computing 
time  
[sec] 

small 4,000 10,60 quadratic 4,934 10,51 

medium 5,196 10,41 horizontal 5,865 10,13 

large 5,904 9,74 vertical 4,301 10,12 

Table 13: Waste and computing times (averages per instance) for the  
different sizes (13.1) and the different shapes (13.2) of the defect 
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Figure 9: Large object of size (1200,300) combined with defect of size (95,285) 

Table 14 differentiates the results concerning the waste further with respect to the 
size (Table 14.1) and the shape (Table 14.2) of the defect on one hand, and with re-
spect to the dimensions of the large object on the other. The amount of waste is 
affected by the size and the shape of the defect in the first place, but varies only 
slightly the more rectangular, less quadratic the large object gets. 

(14.1)    
dimensions of large object (L,W) size of 

defect (600,600) (900,400) (1200,300) 

small  3,686 3,837 4,477 

medium 4,708 5,007 5,873 

large 5,484 6,108 6,119 
    
(14.2)    

dimensions of large object (L,W) shape of 
defect (600,600) (900,400) (1200,300) 

quadratic 4,369 4,930 5,502 

horizontal 5,345 5,566 6,684 

vertical 4,165 4,456 4,283 

Table 14: Percentage of waste (averages per instance) dependent on the 
dimensions of the large object and the size (14.1) and the shape (14.2) of the defect 

 (15.1)    (15.2)   
number of item types n number of item types nsize of 

defect 5 10 
shape of 

defect 5 10 

small 4,987 3,214 quadratic 5,801 4,053 

medium 6,106 4,232 horizontal 6,441 5,026 

large 6,597 5,064 vertical 5,449 3,431 

Table 15: Percentage of waste (averages per instance) dependent on the number of 
item types and the size (15.1) and the shape (15.2) of the defect 

In Table 15, the percentage of waste for different problem sizes (number of item 
types) is depicted against the size (Table 15.1) and the shape (Table 15.2) of the 
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defect. The waste increases with an increasing size of the defect as well as with a 
decreasing number of item types. It can again be observed that the percentage of 
waste is highest for a horizontal defect and lowest for a vertical defect. 
Finally, in Table 16 the percentage of waste for different sizes of the item types is 
demonstrated against the size (Table 16.1) and the shape (Table 16.2) of the defect. 
Similar to what has been said about Table 11, it can be observed here that the solu-
tion quality differs significantly with the size of the item types. Thus, it becomes evi-
dent that – with respect to the solution quality – the size of the item types is the most 
important parameter. 

(16.1)    
size of item types size of 

defect small small/large large 

small 0,962 3,881 7,459 

medium 1,272 5,076 9,159 

large 1,546 5,829 10,117 
    
(16.2)    

size of item types shape of 
defect small small/large large 

quadratic 1,256 4,883 8,642 
horizontal 1,366 5,788 10,046 

vertical 1,158 4,114 8,047 

Table 16: Percentage of waste (averages per instance) dependent on the size of 
item types and the size (16.1) and the shape (16.2) of the defect 

7 Conclusions and Outlook 

In this paper, an exact solution approach and some heuristic modifications have been 
presented for the solution of the two-dimensional, guillotineable-layout Single Large 
Object Placement Problem, in which the large object contains a single defect. It could 
be shown that the proposed (heuristically modified) method provides solutions of 
excellent quality in reasonable computing time. Future work will concentrate on 
extending the proposed method to problems with more than one defect; similar to 
that, the approach could be extended to non-rectangular defects (represented by 
more than one rectangle). 
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