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Abstract

When investigating bounded rationality, economists favor finite-
state automatons – for example the Mealy machine – and state com-
plexity as a model for human decision making over other concepts.
Finite-state automatons are a machine model, which are especially
suited for (repetitions of) decision problems with limited strategy sets.
In this paper, we argue that finite-state automatons do not suffice to
capture human decision making when it comes to problems with infi-
nite strategy sets, such as choice rules. To proof our arguments, we
apply the concept of Turing machines to choice rules and show that
rational choice has minimal complexity if choices are rationalizable,
while complexity of rational choice dramatically increases if choices are
no longer rationalizable. We conclude that modeling human behavior
using space and time complexity best captures human behavior and
suggest to introduce a behavioral taxonomy of complexity describing
adequate boundaries for human capabilities.

1 Introduction

Bounded rationality, namely players resorting to non-equilibrium paths due
to mental limitations, can be explained by different automaton models. To
do so, strategies are implemented using an automaton. A strategy is favored
if the computational complexity of the corresponding automaton is low.
Although this approach is intriguing, two central issues are not resolved:
(1) Although most automaton models were developed to capture the human
brain, neither of them does. (2) Not every decision problem is solvable by
every automaton.
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Early work on the computational complexity of decision problems fo-
cused on applying finite-state automatons to (finitely) repeated prisoner’s
dilemma games (Neyman, 1985; Rubinstein, 1986). Later, this work was
extended to repetitions of two person normal form (Neyman, 1998) and ex-
tensive form (Piccione & Rubinstein, 1993; Chatterjee & Sabourian, 2000)
games. In a recent paper (Salant, 2011), choice rules are analyzed with a
focus on computational complexity.

Especially choice rules are different from the other decision problems:
Repetitions of extensive form and normal form games, allow for a limited
set of potential outcomes and strategies which are ex ante known. Here
complexity is a result of the number of actions in previous periods a player
has to memorize. For choice rules neither strategies, i.e. the choice to
take, nor outcomes, i.e. the utility value of the choice, are limited and ex
ante known. Here, according to (Simon, 1955, 1956), three aspects reduce
the complexity of decision making: (1) Separation of means and ends: Best
alternatives are found only if the goals and the measures taken to reach those
goals are easily distinguishable. (2) (Low) size of the planning horizon: The
smaller the set of alternatives to consider, the simpler the identification of the
best alternative at hand. (3) Fixed aspiration levels: Changing expectations
concerning the best alternative increases the complexity of the decision.

In this paper, we argue that finite-state automatons, such as Mealy ma-
chines (Mealy, 1955), are well suited for repeated games with limited sets of
strategies, but fail to capture choice rules: Choice functions from lists (Ru-
binstein & Salant, 2006) clearly separate the means (the choices) and the
ends (the payoff of the given choices) (1). The separation of means and ends
cannot influence the complexity of finding an adequate choice from a list. At
the same time, the size of the planning horizon (2), namely the number of
elements in the list, is one aspect that influences complexity (Salant, 2011).
However, in contrast to Salant (2011), we argue aspiration levels are another
(3): Salant represents aspiration levels with a fixed satisfactory threshold
a∗. Notice that fixed satisfactory thresholds are crucial when representing
choice behavior using a Mealy machine: Mealy machines capture input and
intermediate results using states. Each state represents a maximum of one
possible satisfactory threshold. As each satisfactory threshold can result in
only one of all infinitely many values, a corresponding Mealy machine has
to consist of infinitely many states. Because, per definition, Mealy machines
have only finitely many states (Mealy, 1955), Mealy machines cannot imple-
ment such behavior. Salant (2011) circumvents this problem by introducing
a K-phase satisficer, i.e. a machine supporting K different, predefined sat-
isfactory thresholds. The K-phase satisficer compares each choice from the
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list to these K ex ante defined satisfactory thresholds and halts when it has
found a satisfiable one.

We give an overview over automaton models which seem to be adequate
for modeling human decision making. By using a simple counting example –
a task that human beings are able to solve but a Mealy machine is not – we
discuss the computational limitations of the Mealy machine. We also show
that a Turing machine captures the idea that humans have a long-term
memory and a short-term memory, which is not captured by the Mealy
machine.

In a next step we discuss the concept of complexity for these machine
models. Complexity consists of state complexity, time complexity and space
complexity. On the one hand, state complexity measures the length of the
strategy description, i.e. the quality of the strategy designer. On the other
hand, space and time complexity measure the effort of realizing the be-
havior induced by the strategy. Therefore, in complexity discussions, state
complexity is often not regarded as central, but space complexity and time
complexity are. If we compare models of human decision making and the
machine models, state complexity corresponds to limitations in long-term
memory and space complexity to limitations in short-term memory. The
fact that short-term rather than long-term memory limitations are regarded
as important in human decision making supports our argument that space
complexity is a central complexity concept.

In a last step, we show that Turing machines and space complexity cap-
ture the problem of (variable) aspiration levels as described by Simon (1956)
in contrast to a Mealy machines and state complexity. We compare two
central families of choice functions from lists, namely rational choice1 and
satisficing. By applying machine models most popular among computer
scientists but different from the Mealy machine, namely the Turing ma-
chine (Turing, 1936), and complexity concepts other than state complexity,
namely space and time complexity (Hartmanis & Stearns, 1965), we show
the central results of Salant (2011) hold, even in the presence of variable
aspiration levels, i.e. if aspiration levels are unknown ex ante. However,
we show that introducing complexity limits much lower than the limits of
existing complexity classes, is necessary to justify satisficing behavior.

We see our work as a motivation to combine two separate approaches
from computer science and economics. While to former spent effort in sepa-

1In the literature rational choice behavior is often called optimizing or maximizing
behavior. In the remainder of this paper, we focus on the term rational choice to simplify
presentation.
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rating tractable from intractable games with a focus on computerized agents
(Tennenholtz, 2004) choosing strategies on behalf of humans, the latter mod-
eled bounded rationality with respect to state complexity. However, neither
of both approaches predicts human behavior. State complexity does not
represent any mental limitations, and even several tractable problems are
far to complex to be solved by human decision makers. Only a joint ap-
proach to precisely derive the limitations of human decision making and
game theoretic extensions incorporating these limitations can help to model
bounded rationality.

2 Overview over Automaton Models

Most theoretical work on bounded rationality considering (procedural) com-
plexity of strategies has focused on either Moore machines (e.g., Abreu &
Rubinstein, 1988; Neyman, 1985) or, more recently, on Mealy machines (e.g.,
Salant, 2011, see Gilboa & Zemel, 1989; Koller & Megiddo, 1992 for excep-
tions). Both Moore and Mealy machines are deterministic finite automatons.
Aside from deterministic finite automatons, several other automaton mod-
els exist which differ in the descriptive power of the program (or language)
they support. In this section we first discuss the motivation for introducing
automaton models different from deterministic finite automatons following
the hierarchy introduced by Chomsky (1956). When we discuss the advan-
tages and disadvantages of different automaton models, we use the problem
of counting which seems to be simple for a human being to realize.

All existing automaton models rely on the same basic concept. When
processing information, the automaton starts in an initial state. Then the
automaton receives an input in the form of a string. It processes this input
sign by sign. Depending on the last sign read, it either changes its state or
remains in its current state. The set of rules describing the transitions from
one state to another depending on the input sign are called the program of
the automaton (Hopcroft, 2007).

Chomsky (1956) classified the automaton models according to the pro-
gram language they can process. The simplest automaton models, i.e.
Chomsky Type-3, are deterministic finite automatons, like Mealy or Moore
machines. They support evaluations of the input with respect to regular
repetitions in the input string. For example, with respect to lists of differ-
ent choices, they identify the first occurrence of an element with value 3 or
the first element with value 3 after six elements with value 2.

A central disadvantage of deterministic finite automatons is that they
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cannot compute solutions for minimal extensions of regular repetitions.
Think of a list with repeated elements with value 3 and value 2. An au-
tomaton should identify the most frequent value. No finite deterministic
automaton can solve this problem according to the pumping lemma (Jaffe,
1978): Consider a list starting with n elements of value 3 followed by n+ 1
elements of value 2. Formally, the list has length 2n+1 and is represented by
the following sequence 3n2n+1. A deterministic finite automaton to identify
the most frequent value needs at least n+ 1 states to count the occurrence
of value 3 and value 2. In state q1 it remembers having seen one value 3,
in state q2 it remembers having seen two values 3, in state qn it remembers
having seen n values 3. If in state qi a value 2 is read from the input, the
automaton moves to qi−1. If after reading all input elements the automaton
is in a state different from q0 more values 3 than 2 occurred. As soon as
the input consists of one additional 3 in the beginning of the list and one
additional 2 at the end of the list, the automaton needs another state re-
sulting in n+ 2. However, one can always think of a list having one more 3
and one more 2, resulting in an automaton having infinitely many states to
support comparisons of the number of occurrences. As a deterministic finite
automaton may not have infinitely many states (Hopcroft, 2007), this easy
decision rule cannot be realized using a deterministic finite automaton.

The main reason for the limitations of deterministic finite automatons is
their lack of memory. The problem described could easily be solved using an
automaton of Chomsky Type-2 with one (memory) stack, i.e. a pushdown
automaton (Oettinger, 1961). In a stack one can save up to infinitely many
elements and access only the last one added. Whenever a pushdown au-
tomaton for counting reads a 3 from the input, it adds it to the stack. If the
automaton observes a 2, it removes the last added 3 from the stack. If the
automaton reads a 2 from the input and the stack is empty, the input con-
sists of more 2s than 3s. Although pushdown automatons support counting,
they still have their limitations. Think of additional input elements with
values different from 3 and 2. To find the most frequent one the automaton
has to memorize the number of elements observed for each specific element.
Hence, it would have to simultaneously access at least 2 of n − 1 stacks,
where n is the number of different values.

To increase the capability of the automaton, we have to allow the au-
tomaton to access more than one memory element. A corresponding au-
tomaton of Chomsky Type-1 is the linear-bounded non-deterministic Tur-
ing machine (Myhill, 1960). A linear-bounded non-deterministic Turing ma-
chine supports n · k memory slots, with n being the length of the input and
0 < k < ∞ being a constant. These memory slots can be used to count the
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Table 1: Supported comparisons per Chomsky Type
Chomsky Automaton model Access to Unsupported Comparisons
Type memory

3 Deterministic Finite 0 elements Frequency of two different elements in lists
Automaton Frequency of three different elements in list
(Mealy and Moore machine) All elements in a list with each other

2 Non-deterministic Pushdown 1 element Frequency of three different elements in list
Automaton All elements in a list with each other

1 Linear-bounded non- n · k elements2 All elements in a list with each other
deterministic Turing machine

0 Deterministic Infinitely many -
Turing machine elements (Computationally equivalent to computers)

occurrence of each element and identify the most frequent one.
Linear-bounded non-deterministic Turing machines still lack some of the

functionality of modern computers. I.e., think of a machine that wants
to compare all elements in a list with every other element, and create a
preference order in which one element is better than another element if it lost
fewer comparisons with worse elements. An automaton implementing such
behavior would have to memorize the result of each individual comparison
and determine an order depending on these results. Hence, it would need
to memorize the result of n · n comparisons. As always, a n exists so that
n·n > n·k holds: this is not applicable to a linear-bounded non-deterministic
Turing machine. Deterministic Turing machines without memory limits
(Turing, 1936) can solve this problem. They have Type-0 according to the
Chomsky hierarchy (Hopcroft, 1969). Table 1 summarizes our discussion.

3 Turing machines

We have given a short overview of different automaton models. The sim-
plest ones, i.e. finite-state automatons, cannot compare the number of oc-
currences of two different values in a list of input elements. More sophisti-
cated automatons, such as the non-deterministic pushdown automaton, still
lack the ability to compare the occurrences of more than two different val-
ues. We have shown that choice rules with variable aspiration levels cannot
be captured by finite-state automatons, but by Turing machines. We in-
troduced two different variants of Turing machines, namely linear-bounded
non-deterministic Turing machines and deterministic Turing machines, both
of which support counting. Because deterministic Turing machines are as
powerful as current computers, computer scientists today focus their com-

2n is the number of elements of the input or the length of the input. k is a constant
with k < ∞.
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plexity considerations on this automaton model. In the remainder of this
paper, we analyze choices from lists using multi-tape Turing machines, a
machine type computationally equivalent to deterministic Turing machines
(Papadimitriou & Yannakakis, 1994). Therefore, we first formally introduce
the multi-tape Turing machine in the remainder of this section formally,
before we give an overview of the complexity concepts.

A (multi-tape) Turing machine processes data using n tapes consisting
of infinitely many cells3: the input tape and n−1 output tapes. Initially the
input tape, a read-only tape, holds the input, a finite-length string. All cells
of the n − 1 output tapes hold the symbol B. The input tape head reads
the data on the input tape. The input tape head is initially positioned at
the left-most position of the input. When processing a program the Turing
machine moves along all n tapes. Every move consists of three steps: (1)
The machine changes its state, where the new state might be the old state.
(2) The Turing machine writes a symbol to any combination of output tapes
at the position of the corresponding tape heads. This symbol replaces the
symbol currently at the specified position and might be the same symbol as
the one that was there before. (3) All tape heads move either one position
to the left or one position to the right or remain in the current position.

Definition 1 A Turing machine is a 6-tuple M = (Q,Γ, δ, q0, B, F ), where
Q is the finite set of states, Γ is the set of tape symbols, δ : Q × Γn →
Q × [(Γ × {L,R,N})]n is a transition function, q0 ∈ Q is the start state,
B ∈ Γ is the blank symbol and F ⊆ Q is the set of accepting states.

In contrast to deterministic finite automatons, three complexity concepts
– state complexity, space complexity and time complexity – are applicable to
a Turing machine. The definition of state complexity (stateM ) is equivalent
to the definition of state complexity of a deterministic finite automaton.
In addition, space complexity captures the number of positions on output
tapes used during the processing of a program, while time complexity is the
number of head moves used.

Definition 2 We capture the complexity of a Turing machine M with three
different concepts:

a) stateM : number of states M consists of

3Notice, that we resort to multi-tape Turing machines as we believe them to be clos-
est to the human brain: human decision makers can access different data chunks they
memorized without having to move on their memory tape.
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b) timeM (w): number of head moves M uses when processing input w

c) spaceM (w): number of tape cells M uses when processing input w

Note that, while the number of states does not depend on the input,
both the number of head moves and the number of tape cells can vary with
the input. One typically measures both time and space complexity in a
worst-case scenario. That is, one measures the maximum head moves or
tape cells used when receiving the worst input for the algorithm of length n.

Definition 3 (e.g., Goldreich, 2008): For a Turing machine M complexity
is defined as

a) STATEM : stateM

b) TIMEM (n): max{timeM (w)||w| = n}
c) SPACEM (n): max{spaceM (w)||w| = n}

4 Chomsky Hierarchy and Automaton Models

Let us now apply the results from considering automaton models with differ-
ent Chomsky Types to economic decision making (see Table 2). Notice, as
the capabilities increase between the different Chomsky types every automa-
ton model with a lower Chomsky Type can solve all problems a automaton
with a higher type can solve. E.g., if an automaton of Chomsky Type-2 can
solve a certain problem, all automata with Chomsyk Type-0 and Type-1 can
do so, too.

Pure strategies in repeated versions of normal form and extensive form
games can be easily implemented by automatons of any Chomsky type: The
basic idea is that they assign a certain response to a (finite) history of previ-
ous actions. Hence, the corresponding automaton has to have (a maximum
of) one state per possible history to consider and realize the response to this
history. Given that the game is not played for infinitely many periods or
players ‘forget” part of the history after some time the history to remember
is always finite and memorizable.

In contrast to equilibria in (repeated) games, for choices from lists, as the
ones considered by Salant (Salant, 2011), simple automata with Chomsky
Type-3 suffice to make a choice, if and only if outcomes are ex ante known
and decision maker knows their specific order. We believe that this is not
realistic. Think of a website presenting shoes characterized by different
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Table 2: Chomsky Type and decision problems
Chomsky Type Decision problem

3 Equilibria in pure strategies in (repeated) games
Choice from list if outcomes are known ex ante and finite

2 Choice from list with memorizing position of best alternative
Choice from list with variable aspiration levels

1 Market decisions based on decisions of the competition
0 Any decision possible

prices, colors and shapes. A decision maker will not ex ante know all possible
shoes. Hence, for him the set of shoes is infinite and an automaton with
Chomsky Type-3 cannot implement the corresponding choice rule. Notice,
this even holds for K-phase satisficing: To specify the K thresholds the
decision maker has to know the distribution of his utility values for the shoes,
an unrealistic assumption. If he does not know the distribution, he could
start with an automaton accepting only shoes with to high utility values
and would have to restart after traversing all shoes without any above his
lowest acceptance threshold. As the automaton of Chomsky Type-3 cannot
memorize anything, after this traversing the distribution of utility values
of shoes would still be unknown and the new automaton would have to be
parameterized without any knowledge from the first traversal.

To make choices if outcomes are ex ante unknown Chomsky Type-2
suffices. Here, the player can memorize the utility value of the best choice
seen to date using his memory and compare all subsequent choices to this
so far best alternative. Given a utility function, an automaton of Type-2
can implement any choice from a list.

An automaton of Chomsky Type-1 or higher is necessary if properties
of all alternatives to need be kept in mind. I.e., think of a market decision
where one company wants to choose a price based on the prices and product
qualities of the competition. Given that price and product qualities the
output per competitor could be calculated and the own decision made.

Finally Type-0, further extends the capabilities. A corresponding au-
tomaton would be necessary, if the influence of prices and product quality
of one company on another would be taken into account and should be
measured.

5 Introducing Aspiration Levels

In the last section, we showed that for realistic choice decisions, i.e. choices
with variable aspiration levels, automatons with at least Chomsky Type-2
are necessary. We now argue that applying Turing machines allow for better
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capturing the human brain structure, before we describe a Turing machine
to make choices from lists.

If we compare models of human decision making and empirical find-
ings with the Turing machine time and space complexity better capture the
difficulties in human decision making than state complexity. A simple com-
parison would look as follows. The states of a Turing machine correspond
to human long-term memory. Human short-term memory is comparable
to the space a Turing machine requires on the output tape when process-
ing information. Finally, the time it takes for a human to process certain
information is captured by the time a Turing machine requires to process in-
formation. Recent research by neurologists assigns a different importance to
all concepts: Experiments with monkeys show that the more difficult a deci-
sion problem is, the slower the rate of increase in neural activity (Heekeren,
2008). Hence, the more difficult the problem, the more slowly a decision
is made: Time complexity does matter for human information processing.
While initial work on human short-term memory claims that humans are
able to memorize up to 7 chunks4 of information (Miller, 1956), more re-
cent work sees the limit at about 4 chunks of information (Cowan, 2001):
Space complexity does matter for human information processing. According
to recent results of neurologists the size of the neural network is not really
limited. Each human brain consists of 21.5 billion neurons (Pakkenberg &
Gunderson, 1997). As this is an indicator for the capabilities of the hu-
man long-term memory, we believe that state complexity does not matter
in human decision making.

5.1 Mealy machine

We now discuss different machines implementing choice rules. We first de-
fine choice rules before introducing corresponding machines. “A list is a
[. . . ] finite sequence of elements X,” given that X is a finite set of N ele-
ments (Rubinstein & Salant, 2006). A rational “decision maker has a strict
preference relation (i.e., complete, asymmetric and transitive) � over X and
chooses the �-best element from every list. (Salant, 2011)” In contrast, a

4A ”chunk of information is rather fuzzy and culture dependent: A chunk of information
is one data item a human being can memorize in isolation. Think for example of the
string ”NYTWSJNFLNBA. Although the string is a combination of 12 characters, it
can be seen as 4 chunks: ”NYT (New York Times), ”WSJ (Wall Street Journal), ”NFL
(National Football League), ”NBA (National Basketball Association), at least for the
average American. For a Chinese farmer, all these abbreviations can have no meaning,
which results in his being presented with 12 symbols not in the characters he is familiar
with. He would have to memorize each letter in isolation, or 12 chunks.
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satisficing “decision maker has a strict preference relation � over X and a
satisfactory threshold a∗ ∈ X. He chooses the first element in the list that
is not inferior to a∗; if there is no such element he chooses the last element
in the list.”

As an example, we use an outcome space with four alternatives, X =
{1, 2, 3, 4}, introduced by Salant (2011)5. Salant suggests an automaton
without support for variable aspiration levels (see Figure 1 (a)). Per defini-
tion, satisfactory choices are 3 and 4, while 1 and 2 are unsatisfactory. The
automaton consists of one state. As long as 1 or 2 are read from the input,
the automaton stays in the unsatisfied state q0 and reads the next element
from the list. As soon as the automaton reads 3 or 4, the automaton halts
and writes the found number as output. In this subsection, we prove that
the simplicity of the automaton is mainly due to the lack of support for
variable aspirations levels.

Proposition 1 The state complexity of Mealy-automaton supporting vari-
able aspiration levels is at least N − 1.

Proof 1 When deriving aspiration levels an automaton ex ante does not
know the acceptable aspiration level. Hence, an automaton could accept
every one of the N −1 values between the minimal possible and the maximal
possible value as aspiration level. A corresponding automaton has to consist
of at least N − 1 states, as for each aspiration level a separate state needs to
be part of the machine which determines whether to stop searching, to remain
in the aspiration level or to switch to another aspiration level. Figure 1 (b)
shows a simple example of an automaton with support for variable aspiration
levels. The machine starts in state q0 which only accepts the maximum (i.e.,
4) as a solution. After reading the maximum the machine switches to the
final state and halts. If it reads 1 or 2, it switches to a state q1 which accepts
2 as solution, while it switches to a state q2, which accepts 3 otherwise. In
subsequent stages, q1 or q2, the automaton switches to the final state and
halts if either the maximum or the aspiration level is reached, while it keeps
processing the input if the aspiration level is not reached.

5Note that the state in which the machine halts, represented by the symbol ”Stop,
according to Mealy (1955) also is a state, called the final state. To adhere as close to
the terminology of Salant (2011) as possible, we do not count final states when deriving
state complexity. In Mealy machines the output is typically specified on the edges. Salant
visualizes output by transition functions for outgoing edges below states. To simplify
comparison, in this paper follow the notation of Salants notation.
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Figure 1: Different Mealy machines

Theorem 1 A Mealy-automaton cannot support variable aspiration levels
given the set of elements X is not known or infinitely large.

Proof 2 The theorem directly follows from Proposition 1. If the set of ele-
ments X is not known an infinite number of potential aspiration levels has to
be considered. Hence |X| is infinite. If |X| = N − 1 is finite, a correspond-
ing Mealy-automaton would have infinitely many states which contradicts
the definition of the automaton.

5.2 Turing machine

Having shown, that Mealy machines are not capable of solving the problem
of making a choice from a list given variable aspiration levels, we now apply
Turing machines both to satisficing and rationalizing behavior and show
that the theorems introduced by Salant 2011 still hold. Therefore, we prove
the two theorems introduced by Salant (2011) for our setting, i.e. for a
Turing machine, and derive explicit results for the complexity of the Turing
machine.

Proposition 2 For a Turing machine implementing order-independent and
rationalizable choice functions, the following complexity results hold

a) STATEM : 1

b) TIMEM (n): n

c) SPACEM (n): 1

12



Proof 3 A Turing machine implementing rationalizable choice functions
has to consist of one initial state. In this initial state, it reads the input and
compares it with the first position of the output tape. If the input is larger
than the element on the output tape or the element on the output tape is
the blank symbol B, the Turing machine writes the input to the output type;
otherwise it writes the element of the output to the output tape again. The
Turing machine stays in the same state and moves the head on the input tape
one position to the left. The Turing machine repeats this until (after n steps)
it reaches the end of the input. The element on the output tape is the solution
of the maximizing problem. While processing the input, the automaton never
changes the state resulting in STATEM = 1, it only writes one cell of the
output tape resulting in SPACEM (n) = 1. The Turing machine changes its
state once for every sign of the input resulting in TIMEM (n) = n.

Proposition 3 For a Turing machine implementing order-independent and
choice functions, which are not rationalizable, the automaton has the follow-
ing complexity.

a) STATEM : 2

b) TIMEM (n): (n−1)(n−2)
2

c) SPACEM (n): n

Proof 4 A Turing machine implementing choice functions that are not ra-
tionalizable memorizes not just the best solutions, but rather all solutions
that are not dominated by any other solution. In the worst case no element
dominates any other element. Therefore, the Turing machine has to memo-
rize all elements in the list on the output tape resulting in SPACEM (n) = n.
In the worst case, the automaton has to compare each element to all pro-
ceeding elements for this check. Hence, the time complexity of this step is
TIMEM (n) =

∑n
i=1 n − 1 = (n−1)(n−2)

2 . A corresponding Turing machine
consists of at least one state for reading the input and one state for travers-
ing through the output tapes and comparing the currently read element to all
preceeding elements having a state complexity of STATEM = 2.

From Proposition 2 and Proposition 3 follows Theorem 2:

Theorem 2 If a choice function is order-independent for pairs then it is
at least as complicated as rational choice. If a choice function is order-
independent and is not rationalizable, then it is strictly more complicated
than rational choice.
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We conclude that Theorem 2 also holds, if complexity is modeled using a
Turing machine. In particular, it holds for all complexity concepts, namely
state, space and time complexity.

Theorem 3 Any choice function with state complexity K that maximizes
expected utility can be represented by a K-phase satisficing procedure.

Proof 5 Think of the deterministic finite automaton introduced by Salant
(2011) with STATEM = K. We turn this automaton into a Turing ma-
chine by ex ante defining K different fixed aspiration levels. We represent
each aspiration level in a separate state of the Turing machine. The Turing
machine always writes the best alternative found to date onto the first cell of
the output tape resulting in SPACEM (n) = 1. In the worst-case scenario,
when the automaton finds no satisfiable solution, it reads all input elements
TIMEM (n) = n. Note that, by applying Turing machines in contrast to
finite-state automatons, the complexity of a satisficing procedure does not
increase if aspiration levels turn from fixed to variable: In a Turing ma-
chine, the aspiration level can be saved on one of the output tapes. And for
every modified aspiration level, the old aspiration level is overwritten, en-
suring that the space complexity does not increase due to variable aspiration
levels. At the same time the Turing machine needs no additional state, since
the automaton always compares the current value to the value on the output
tape. Finally, time complexity will not change as the automaton including
all states and state transitions remains the same.

6 Discussion

We argued that finite state automatons are not suitable to describe choice
rules allowing for variable aspiration levels. By applying automaton models
with lower Chomsky-Type, i.e., Turing machines, we showed that rational
choice and satisficing are equally complex. While the former results, casts
doubts on the quality of state complexity to analyze choice rules, the later
result – at first sight – questions the use of time and space complexity. In
this section, we sketch how to capture bounded rationality using a novel
approach to space and time complexity

Computer science traditionally distinguishes between (1) unsolvable, (2)
intractable and (3) tractable problems. Basically, problems are unsolvable if
no algorithm to solve them exists, while intractable problems are problems
that take to much time to be solved. Finally computers can solve tractable
problems in a reasonable amount of time. To be more precise, problems
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are tractable, if an algorithm exists which (in the worst case) solves the
problem in polynomial time. I.e., the time complexity of the algorithm can
be described by a function growing in n at the speed of a polynomial function
or slower.

In this sense, space and time complexity can be used to classify problems
to be either intractable or tractable. To mention just a few, Gilboa (1989)
and Roughgarden (2009) showed that no tractable algorithm exists to derive
Nash equilibria in which all players receive a payoff at a certain height.
Koller (1992) found that for extensive form games with imperfect recall
computing max-min behavior is not tractable. Ben-Porath (1990) proofed
that finding the best response automaton is intractable, given uncertainty
concerning the automaton other players are using. While these (and similar)
results are important for agent design, i.e., they can help to understand
whether autonomous agents acting on behalf of humans can find certain
outcomes or not, they do not help to understand bounded rationality.

Think of the Turing machine implementing choice functions again. When
using a Turing machine to implement order-independent and rationalizable
choice functions from lists, the complexity of rational choice is minimal.
This directly follows from Proposition 2. For every choice function (except
for such trivial ones as choosing the first element) a worst case exists in
which the automaton has to read all elements to find a solution resulting
in TIMEM (n) = n. Hence, for rational choice an algorithm can be found
which is tractable, while since Simon (Simon, 1955) economists accept that
human decision makers satisfice due to bounded rationality.

Nevertheless, we believe that Turing machines (and space/time complex-
ity) capture human behavior quite well: (1) Decision makers have to mem-
orize observed behavior and/or other properties of the problem at hand.
Hence, their memory limitations of approximately 4 chunks (Cowan, 2001)
strongly influence what problem they can solve and what they cannot. (2)
The time of each decision maker is limited hence, he will limit the time to
process any problem at hand. Think of the choice from lists again. A typical
decision maker will stop searching for better solutions after seeing N << n
elements of the list. I.e., the decision maker will, instead of rational choice,
turn to some form of satisficing behavior which takes the best of the first
N alternatives. Hence, it is time complexity which bounds his rationality.
However, with much lower upper bounds than computers have.

To benefit from existing complexity considerations and the increasing
number of researchers working on corresponding topics, it is crucial to better
understand mental limitations (like space and time constraints) on the one
hand and the algorithms – in the sense of the adaptive toolbox (Marewski
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et al., 2009) – people implement on the other. With this understanding,
we can derive the complexity of heuristics and show for which problems
the heuristics are applicable and for which they are not by deriving the ex-
act space and time complexity of a problem instead of deriving an upper
bound for infrequent special cases. As Kearns (2012) suggested after ana-
lyzing human behavior in well-known algorithmic problems, we believe after
formally investigating choice rules that bounded rationality in well-known
game-theoretic applications calls for a behavioral taxonomy of computa-
tional difficulty. Only such a taxonomy can help us to understand bounded
rationality.
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