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A New Mathematical Programming Formulation for the

Single-Picker Routing Problem in a Single-Block Layout
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Abstract

The Single-Picker Routing Problem deals with the determination of sequences according to which
items have to be picked in a distribution warehouse and the identification of the corresponding paths
which have to be travelled by human operators (order pickers). The Single-Picker Routing Problem
represents a special case of the classic Traveling Salesman Problem (TSP) and, therefore, can also be
modeled as a TSP. However, the picking area of a warehouse typically possesses a block layout, i.e.
the items are located in parallel picking aisles, and the order pickers can only change over to another
picking aisle at certain positions by means of so-called cross aisles. In this paper, for the first time a
mathematical programming formulation is proposed which takes into account this specific property.
Based on extensive numerical experiments, it is shown that the proposed formulation is superior to

standard TSP formulations.
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2 A New Mathematical Programming Formulation for the Single-Picker Routing Problem

1 Introduction

The Traveling Salesman Problem (TSP) is one of the most extensively studied problems in combinatorial
optimization (Rego et al., 2011). It can be described as the problem of finding a least-weight Hamiltonian
cycle in a complete edge-weighted graph (Glover & Punnen, 1997). Since the TSP is a NP-hard problem,
there is no known exact polynomial-time algorithm. However, over a thousand publications exist dealing
with model formulations and algorithms which solve the TSP with less computational effort (Rego et
al., 2011).

This large number of publications can be explained by the fact that the TSP arises in many different
contexts. In the basic situation, a starting point is given from which a product has to be distributed to
other places in such a way that every place is visited and the distance to be travelled is minimal. Beyond
this, the TSP is of prime importance for practical applications in engineering, management, health care
and many other areas. For detailed reviews of applications of the TSP in practice we refer to Lenstra &
Rinnooy Kan (1975), Matai et al. (2010) and Filip & Otakar (2011).

In this paper, we will focus on an application of the TSP that arises in distribution warehouses. Order
picking deals with the retrieval of items from their storage location in such warehouses (Petersen &
Schmenner, 1999; Wascher, 2004). Human operators (order pickers) travel through the warehouse in
order to collect items requested by customers. The respective Single-Picker Routing Problem (SPRP)
includes the determination of the sequence according to which the items have to be picked and represents

a special case of the TSP, too.

For the TSP several mathematical programming formulations have been proposed in the literature. These
formulations seem not to be appropriate for the SPRP since they ignore the special structure of the
latter. The aim of this paper is to provide a new mathematical programming formulation which takes
into account the properties of optimal solutions for the SPRP and results in a substantial reduction of
the number of variables and constraints. It is shown that the size of the formulation is independent of
the number of items to be picked. Furthermore, numerical experiments demonstrate that the proposed
formulation is superior to standard TSP formulations with respect to the computing time needed to solve

the problems.

The remainder of this paper is organized as follows: In the following section we introduce the SPRP
and review the related literature. In Section 3, we present some well known general mathematical
programming formulations for the TSP. As central part of this paper, our new model formulation is
introduced in Section 4. First, the construction of a graph representing the SPRP is described and after
that the model is presented. In order to analyze the different formulations, we solved them with a
commercial IP solver. The results of the experiments are depicted in Section 5. The paper concludes

with a summary and an outlook on future research fields.
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2 Picker Routing Problem

2.1 Problem description

In distribution warehouses typically a block layout is used (Roodbergen, 2001). It consists of a number
of (vertical) picking aisles arranged parallel to each other and (horizontal) cross aisles which can be used
to move from one picking aisle to another. The section between two adjacent cross aisles establishes a
so-called block. Items are stored in and picked from racks on both sides of these picking aisles. Cross
aisles do not contain any storage locations. Furthermore, the warehouse contains a depot where picked
items are deposited. In the following, we will focus on a single-block layout, i.e. only two cross aisles

exist, one in the front and one in the rear of the warehouse. (see Fig. 1).
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Fig. 1: Single-block layout

Let an order picker be available to collect items from the warehouse which are requested by (external or
internal) customers. The black rectangles in Fig. 1 give an example for the locations from which items
have to be collected (pick locations). The order picker starts at the depot, proceeds to the pick locations,

and finally returns to the depot.

Due to the high proportion of time-consuming manual operations, order picking is considered as the most
labor cost-intensive function in a warehouse (Tompkins et al., 2010). Consequently, the minimization
of picking times is of vital importance for the efficient control of the picking process. The total order
picking time (i.e. the time spent by an order picker to collect the items of a picking order) consists
of the setup time for the route, the travel time needed to travel to, from, and between the locations of
items to be picked, the search times for the identification of the items, and the times actually needed
for retrieving the items (Tompkins et al., 2010). Among these components, the travel time consumes
the major proportion of the total order picking time. While the other components can be looked upon
to be constants (search times, pick times, setup times), the travel time represents the only variable part.
It varies with the total length of the picker tour (Jarvis & McDowell, 1991) which, again, is dependent

on the sequence according to which the items have to be picked. If we assume a constant picker travel
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velocity, the minimization of the total length of the picker tour becomes equivalent to the minimization
of the travel time. Therefore, the SPRP can be defined as follows: Given a set of items to be picked from
known storage locations, in which sequence should the locations be visited such that the total length of

the corresponding picker tour is minimized?

2.2 Literature review

The SPRP can easily be recognized as a TSP in which the vertices of the corresponding graph are
defined by the location of the depot and the locations of the items to be picked. Therefore, exact solution
approaches as the solution of mathematical programming formulations for the TSP can be used to solve
the SPRP. A standard TSP formulation was introduced by Dantzig et al. (1954) which includes one binary
variable per edge indicating whether an edge is contained in the tour. However, this formulation requires
an exponential number of constraints. Beyond this approach, also a variety of compact formulations exist
which are characterized by requiring only a polynomial number of variables and constraints. In this paper,
we consider three compact formulations for the TSP which are the formulations by Miller et al. (1960),
Gavish & Graves (1978) and Claus (1984). These formulations will be explained in greater detail in

Section 3. We further refer to Oncan et al. (2009) for a more general review of TSP formulations.

A more specific approach for the solution of the SPRP was proposed by Burkard et al. (1998). They
formulated the SPRP as a Steiner TSP, which is defined as follows: Let G = (V, E) be a graph with a
set of vertices V' and a set of edges E. Let P be a subset of V. The elements of V' \ P are called Steiner
points. A Steiner tour is defined as a closed walk in which each vertex of P is visited at least once. The
Steiner points do not have to be visited. Also, a Steiner tour may contain some vertices and edges more

than once. In total, the Steiner TSP consists of finding a Steiner Tour with minimal length (Burkard et

al., 1998).
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Fig. 2: Illustration of a Steiner TSP

As depicted in Fig. 2, when dealing with the SPRP, the set P is composed of the pick locations and the

depot (black vertices), and the Steiner points are the intersections between the picking aisles and the
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cross aisle (white vertices). The distance between any pair of vertices is the length of the shortest path
between the two vertices. By definition, a Steiner Tour then has to include the depot and the locations of
all items to be picked, where visiting these locations more than once is permitted. This may occur, e.g.,
when a picking aisle is entered and left via the same cross aisle. In comparison to that, some of the white
vertices may be skipped because two points for each picking aisle exist where an aisle can be entered or
left and it is possible to use one vertex twice and skip the other one. Lechtford et al. (2013) developed
some compact formulations for the Steiner TSP. These formulations are advantageous in comparison
to general TSP formulations if the number of Steiner points is large compared to the total number of
vertices (Lechtford et al., 2013). In case of the SPRP, the number of Steiner points is only dependent on
the number of picking aisles and remains constant if the number of items to be picked is varied. Assuming
the number of picking aisles to be constant, a large percentage of Steiner points implies a small number
of items to be picked. However, in case of a small number of requested items, the corresponding general
TSP formulation can be solved easily. Therefore, Steiner TSP formulations are not considered any further

in this paper.

Under the assumption that the warehouse has a single- or a two-block layout, the SPRP can be solved
efficiently (Ratliff & Rosenthal, 1983; Roodbergen & de Koster, 2001a). Ratliff & Rosenthal (1983)
proposed an optimal algorithm for the SPRP with a single-block layout based on dynamic programming
which solves the problem in O(m+n) time, where m is the number of picking aisles and n is the number

of requested items. However, the authors do not present any model formulation.

Since the model formulation presented in this paper will contain some elements of heuristic routing
schemes, we also give a short overview of heuristic approaches for solving the SPRP. Heuristic routing
schemes are fast to memorize and quite easy to follow and, therefore, prevalent in practice in order to
solve the SPRP (Roodbergen, 2001). Their application helps to reduce the risk of missing an item to be
picked. The simplest routing heuristics are the s-shape, the return and the largest gap strategies which are
also described in de Koster et al. (2007) and Gu et al. (2007). The S-shape heuristic provides solutions
in which the order picker enters and traverses a picking aisle completely if at least one required item is
located in that aisle (an exception would be the last picking aisle in which an item has to be picked if the
order picker is positioned on the front cross aisle). Afterwards, the order picker moves to the next aisle
to be visited. The application of the return heuristic rises to a tour in which each picking aisle is entered
from the front cross aisle. For each picking aisle, the picker walks to the farthest pick location and returns
to the front cross aisle after picking the items. The largest gap heuristic gives a solution in which the
order picker completely traverses the first and the last aisle containing a demanded item. All other aisles
containing at least one required item are entered from the front and from the rear cross aisle in a way that
the non-traversed distance between two adjacent pick locations or a pick location and the adjacent end
of the aisle is maximal. The combined strategy (Roodbergen & de Koster, 2001b) integrates elements
of the S-shape and return strategy. Aisles may be traversed entirely or may be entered and left from the
same cross aisle. The respective solutions are provided by application of dynamic programming. The

performance of the proposed heuristics is dependent on the problem characteristics (number of picking
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aisles, number of locations per aisle, position of the depot, number of requested items). Moreover, the
policy according to which items are assigned to different locations has a significant impact on the tour

lengths provided by the heuristics.

3 General mathematical model formulations for the TSP

Typically, the TSP is modeled on a complete graph GT5F = (V, E). In case of the SPRP, the set of
vertices V' = {0, ...,n} contains the depot (vertex 0) and all locations where an item has to be picked.
The set of edges is definedas £ = {(p, q) | p,q € V,p # ¢} and for each edge a distance c,, is calculated.
For the TSP a variety of mathematical formulations has been proposed so far (Oncan et al., 2009). In
order to be able to solve the formulations without using cutting-plane methods, we focus on formulations
with a polynomial number of both variables and constraints. The three following formulations have also
been chosen by Lechtford et al. (2013) and differ in two characteristics which are the number of variables

and constraints and the quality of the lower bound obtained by solving the LP relaxation.

3.1 Formulation by Miller, Tucker and Zemlin
A classic way to model the TSP has been proposed by Miller et al. (1960). This formulation uses the
following variables:
1, ifedge (p,q) is contained in the tour
Tpg = . ((p,q) € E)
0, otherwise

h,:  position of vertex p in the tour (p € V'\{0})

Now, the TSP can be modeled as follows:

min Z Cpq * Tpq (D
(pO)€E
Y wp=1 VqeV 2)
peV
d wp=1 VpeV A3)
qeV
hy —hg+(n+1)zp, <n VY(p,q) € E:pqg#0 4)
Ty € {0,1}  V(p,q) EE (5)
h,>0 Vpe V\{0} (6)

The objective function minimizes the travel distance. In (2) and (3) it is guaranteed that each vertex
has to be visited exactly once. Furthermore, the conditions (4) exclude subcylces by ensuring that the

position of vertex p is smaller than the position of vertex ¢ if edge (p, ¢) is used. This formulation requires
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only O (n?) variables and constraints. However, the solution of its LP relaxation results in an extremely
weak lower bound (Padberg & Sung, 1991).

3.2 Formulation by Gavish and Graves

A formulation based on single flow commodities has been introduced by Gavish & Graves (1978).
Starting at the depot with n units of a commodity, a single unit of this commodity is delivered when
a vertex is passed. For this model additional non-negative variables are introduced describing the flow

on edge (p,q) € E:
Gpq:  amount of the commodity passing directly from vertex p to ¢ ((p,q) € E: ¢ # 0)

This results in the following model formulation:

min Z Cpq * Tpq (7)
(pg)eE

prq =1 VYgeV (8)
peV

prq =1 VpeV 9)
qeVvV

qup - Z Gpg =1 Vpe V\{0} (10)
qev qeV\{0}

Gpg STy Y(pyq) EEq#0 (11)

Tpg € {0,1}  V(p,q) € E (12)

9pq >0 V(p,q) €E:q#0 (13)

Constraints (10) ensure that exactly one unit of the commodity is delivered to each vertex p € V'\ {0}
while constraints (11) guarantee the flow to be zero along edges not included in the tour. The formulation
by Gavish & Graves (1978) includes O (n?) variables and constraints and Padberg & Sung (1991) have
shown that it leads to a stronger bound than the formulation by Miller et al. (1960).

3.3 Formulation by Claus

A further formulation, which uses multi-commodity flows in order to prohibit subcycles, was introduced
by Claus (1984). Here, n commodities have to be delivered, one unit of a commodity to each customer,
which results in the following additional variables:

wk.: amount of commodity & passing directly from vertex p to ¢ ((p,q) € E, k € V\{0})
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The formulation for the TSP is as follows:

I R (14)

(p.9)€E
Y =1 VYqeV (15)

peV
Y ay=1 VpeV (16)

qeV
dowh, =Y wh =0 VpkeV\{0}:p#k (17)

qeVv qeV
dowf,— > wh=-1 VkeV\{0} (18)

geV\{0} geV\{0}

> owh, = wh =1 VpeV\{0} (19)

qeVv qeVvV
wy, S 2 V(p,q) € B, k€ V\{0} (20)
1pe €{0, 1} V(p,q) €E 21
wy, >0 V(p,q) € E, ke V\{0} (22)

Constraints (17) ensure that a commodity leaves a vertex which is not its final destination. In (18), it is
guaranteed that each commodity leaves the depot and is delivered to a vertex and (19) ensure that each
vertex gets exactly one commodity. O (n?) variables and constraints are used in this model formulation.
The solution of its LP relaxation leads to the strongest lower bound of the three formulations considered
here (Padberg & Sung, 1991).

Each of these three formulations can be used to model and solve the SPRP. However, the number of
variables and constraints and, therefore, the computing time needed to solve the problem get quite large

when the number of requested items increases.

4 An improved formulation for the SPRP

In routing problems encountered in an order picking warehouse, routes have a special structure which
results from the fact that a cross aisle has to be used to move from one picking aisle to another. When
considering optimal routes, movements within picking aisles are also quite restricted. Both properties

are not considered by general TSP formulations.

In this section, we introduce a graph-theoretical formulation that takes into account these properties and
we show that the respective number of vertices and edges is not dependent on the number or the locations

of the requested items. Then, a TSP formulation is applied to this graph in order to model the SPRP.
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4.1 Graph construction

When dealing with the SPRP in a single-block layout, it is not necessary to consider a complete graph
with edges between each pair of vertices because only a few combinations of edges can be included in
an optimal tour. Ratliff & Rosenthal (1983) have shown that only six different ways exist how items can

be picked in a picking aisle. They are depicted in Fig. 3 and will be explained below.
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Fig. 3: Movements within a picking aisle permitted for an optimal solution

(1) The order picker enters the picking aisle from the front cross aisle, picks all requested items

sequentially and exits the aisle at the rear cross aisle.

(2) The order picker enters the picking aisle from the rear cross aisle, picks all requested items and
exits the aisle at the front cross aisle.

(3) In order to pick all items, the order picker enters and exits the picking aisle twice, once from and
back to the front and once from and back to the rear cross aisle. In both cases he returns to the
cross aisle from where the picking aisle was entered. The return point is defined by the “largest
gap” which is the largest distance between two adjacent pick locations or a pick location and the

adjacent cross aisle.

(4) In order to pick all items from the respective picking aisle, the order picker enters and leaves the
aisle at the front cross aisle. The return point is defined by the pick location which corresponds to

the largest distance from the front cross aisle.

(5) Likewise, the order picker enters and leaves the aisle at the rear cross aisle. The return point is

defined by the pick location which corresponds to the largest distance from the rear cross aisle.

(6) The picking aisle is not entered at all since no requested item is located in that aisle.
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With respect to these properties it is sufficient to consider only six points for a picking aisle ¢ instead of

all locations in which requested items are stored. In particular, these points are given by
(a) the intersections between a picking aisle ¢ and the front / rear cross aisle (vertices [i, 1] and [z, 6]),
(b) the two pick locations defining the largest gap (vertices [¢, 3] and [i, 4]) and

(c) the first and the last location where an item has to be picked (vertices [i, 2] and [z, 5)).

In case that less than four items have to be picked from an aisle, points need to be duplicated in order
to obtain the required number. In case that only one item is required, its location is represented by [i, 2],
i, 3], [i,4] and [¢, 5]. If two items from different locations are required, then [i, 2] and [i, 3] ([7, 4] and [7, 5])
are identical. In case of three items, the pair of locations defining the largest gap has to be determined. If
the gap is between the two pick locations nearest to the front cross aisle, then [z, 2] and [z, 3] are identical,
otherwise [i,4] and [i, 5].

Based on these considerations, a graph representing the SPRP in a warehouse with a single-block layout
can be constructed by introducing the six vertices for each picking aisle and choosing the edges that
result from the options according to which items can be picked in a picking aisle (see Fig. 3). In order
to represent moves of the order picker in the cross aisles, each pair of vertices ([, 1], [i + 1]) and
([4,6],[¢ + 1,6]) (@ = 1,...,m — 1, where m denotes the number of picking aisles) is connected by
two arcs. The depot is positioned in front of the leftmost picking aisle and identical to vertex [1, 1] in
the graph-theoretical representation. An example of a graph related to a (single-block) layout with five

picking aisles is depicted in Fig. 4.
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Fig. 4: A graph-theoretical representation of a SPRP in a single-block layout with five picking aisles

The weight c. for an edge e in a picking aisle 7 can be determined as follows: The edge weight c(j; 3,(;.4))
is always equal to the largest gap between two adjacent requested items in picking aisle 7 or a requested
item and the adjacent cross aisle. Let j; be the location represented by vertex [4, 3]. Then, three different

cases have to be distinguished for the determination of ¢((; 1), (;,2)) and ¢ (s 2),11.3))
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(1) If 57 does not correspond to the location of a requested item but to the point where picking aisle ¢
can be entered via the front cross aisle, then c((; 17,15,2)) = ¢(ji,2,13,3) = O-

(2) If j; corresponds to the location of the requested item nearest to the front cross aisle, then ¢(; 1) 15,2

is equal to the distance between the front cross aisle and j;, and c(j; 2 ;,3)) = 0 holds.

(3) Otherwise, c(j;11,(i,2)) 1s determined as in the second case, and c(|; 7 [;,3)) 1S the distance between the

location of the requested item nearest to the front cross aisle and j;.

The determination of ¢(; 4),[1,5)) and ¢ 5),i,6)) 1S performed analogously. If picking aisle ¢ does not contain
any requested item, then c¢(; 3 (;.4) 1S equal to the distance between the front and the rear cross aisle and

the other edge weights are set to zero.

A feasible solution for the SPRP would be given by a tour which starts and ends at vertex [1, 1] and
includes the vertices [7, 2], [i, 3], [i, 4] and [, 5] for each picking aisle ¢ that contains at least one requested
item. When applying a model formulation for the TSP to this graph, we therefore need degree constraints
for these vertices in order to ensure that they are contained in the tour. However, using this approach will
result in two problems. First, even in an optimal solution for the SPRP, it is possible that vertices are
visited more than once, which is not allowed in a standard TSP. Second, it is not sufficient to only

guarantee that all vertices in a picking aisle are visited because this may lead to tours in which some

@)
i

requested items are skipped.

i3

'(.

| —3
L2
k1

|—y

(1)
Fig. 5: Prohibited path in a solution
In Fig. 5, an infeasible combination of edges in a picking aisle is depicted. All vertices in this picking aisle
are visited, however, it cannot be guaranteed that all items are included in the tour. This is caused by the
fact that the number of vertices by which each picking aisle is defined, is neither dependent on the number
nor on the location of the requested items. Because of this reason, it is possible that some requested items
are situated between the locations that are represented by the vertices. Vertices [z, 3] and [¢, 4] represent
the two locations defining the largest gap and, therefore, no requested item can be situated between those
locations. This is not true for vertices [i, 2] and [z, 3] as well as for [, 4] and [, 5]. Since vertices [7, 2] and
i, 5] represent the location nearest and farthest from the front cross aisle, several requested items may be

situated between these locations and the locations defining the largest gap. Therefore, guaranteeing that
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each vertex is included in the tour is not sufficient. In order to ensure feasibility of the solutions obtained
by applying a TSP formulation based on this graph, additional predecessor and successor constraints
for arcs would be needed. For example, we would have to ensure that arc ([i, 4], [¢,5]) is used if arc

([4, 3], [i,4]) was chosen.

Another issue refers to the elimination of subtours. The general concept of the subtour elimination
constraints in the three TSP formulations presented above consists of the enumeration of the vertices
according to the sequence in which they appear in the tour. This approach cannot be successful when
using this graph, because on the one hand, vertices are allowed to be visited more than once and, on the

other hand, some cycles are allowed within the tour (e.g. if a largest gap strategy is used in an aisle).

In order to avoid visiting vertices more than once, vertices are split into several vertices in such a way that
each generated vertex can only be visited one time. According to Ratliff & Rosenthal (1983) vertices
corresponding to cross aisles can be visited up to three times, while the other vertices may be visited
twice or less. Therefore, we replace each vertex [i, 1] and [7,6] (i = 1,...,m) by three vertices, where
one vertex has to be used to enter a picking aisle and the other two vertices correspond to movements to
the left and to the right in the cross aisles. The vertices [i, 2], [i, 3], [i,4] and [, 5] represent movements
within a picking aisle ¢ and are replaced by two vertices, where these vertices correspond to movements
towards the rear cross aisle (up) and the front cross aisle (down), respectively. Furthermore, a vertex

symbolizing the location of the depot is added. An example for the resulting graph is depicted in Fig. 6.

Fig. 6: Modified graph-theoretical representation of a SPRP in a single-block layout with five picking aisles
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In general, the vertices of this graph can be described as follows. Vertex 0 symbolizes the location of
the depot and the other vertices are characterized by a triple, where the first component represents the
direction in which the tour can be continued. r and [/ indicate movements to the right and to the left,
respectively. Movements towards the rear cross aisle and towards the front cross aisle are symbolized
by u (,up®) and d (,,down*). The second component characterizes the number of picking aisle 7, where
picking aisle 1 is the leftmost and aisle m the rightmost picking aisle. The last component of the triple
represents the location of the vertex, where f and b mean that the vertex corresponds to the front and the
rear cross aisle, respectively. The four locations in a particular picking aisle are enumerated from 1 to 4.
Based on this denotation, the vertices [I, 1, b], [, m, b] and [r, m, f] do not exist, because at these points
either moves to the left or to the right are possible. After having introduced the vertices of the graph,
arcs are added according to the feasible options according to which requested items can be picked in a
picking aisle (see Fig. 3).

These modifications result in a graph in which an optimal order picking tour can be constructed without
visiting a vertex more than once. This graph includes more than twice the number of vertices as the
previously presented graph does. However, the size of the improved model formulation for the SPRP
will only be dependent on the number of arcs and not on the number of vertices. Furthermore, the size
of the graph is completely independent of the number of requested items. Applying a TSP formulation
to this modified graph, in which the number of subtour elimination constraints increases linearly to the
number of arcs, will lead to a mathematical model whose size increases linearly with the number of
picking aisles.

4.2 Model formulation based on the modified graph

In this section, it is shown how a TSP formulation is applied to the graph constructed in section 4.1.
The complete mathematical model for the SPRP including the definition of all constants and variables

is presented in the appendix. It includes the following classes of constraints:

* Degree constraints [(26) - (48)]: Each vertex visited has to be left afterwards.
* Subtour elimination constraints [(49) - (79)]: The resulting tour has to be connected.
* Depot inclusion constraint [(80)]: The depot has to be included in the tour.

* Item inclusion constraints [(81) - (82)]: Each requested item has to be included in the tour.

The degree and subtour elimination constraints [(26) - (79)] are very similar to the corresponding
constraints [(2) - (4), (8) - (11) and (15) - (20)] used in the general TSP formulations and are only
described briefly. As decision variables we introduce binary variables for each arc, indicating if the arc
is contained in the tour (variable is equal to 1) or not (0). For a picking aisle 7, the denotation of the
variables for the different arc types is depicted in Fig. 7. For the sake of clarity, each arc type is only
included for a single direction in this figure. Arcs corresponding to movements in the opposite direction

are excluded. (For example, arc ([u, i, 3], [u, ¢, 4]) is depicted and ([d, 7, 1], [d, 7, 2]) is excluded.)
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Fig. 7: Denotation of the variables in the model formulation

The degree constraints in general TSP formulations ensure that each vertex is visited exactly once, which
means that the indegree and the outdegree of each vertex are equal to one, respectively. When dealing
with a SPRP represented by the modified graph, each vertex is visited at most once. However, some
vertices may exist which are not included in an optimal tour. Therefore, it has to be ensured that the
indegree and the outdegree are equal to 1 if a vertex is visited and equal to 0 otherwise. This can be
done by requiring that, for each vertex, the indegree is equal to the outdegree. In the degree constraints
(26)-(48), the outegree is calculated on the left hand side of the equation while the right hand side

represents the indegree.

The mathematical models presented in Section 3 only differ in the way how subtours are excluded. Based
on pretests, we decided to apply the subtour elimination constraints by Gavish & Graves (1978) in which
the arcs are enumerated according to the sequence they are used in the tour. Constraints (10) ensure that,
for each vertex i € V'\ {0}, the sum of variables corresponding to arcs, which can be used to reach
vertex 4, has to be one greater than the sum of variables for leaving this vertex. Constraints (11) result
in a solution where both sums contain exactly one variable greater than zero, respectively. The general
principle of constraints (10) is also used in the model formulation based on the modified graph. The
application of these constraints leads to constraints (49) to (69). The structure of the left hand side of
these equations is equal to those of constraints (10). However, the right hand side of constraints (49) to
(69) cannot be equal to one for each vertex, because this would lead to tours in which all vertices have to
be visited although it is allowed to skip some vertices when using the modified graph. Therefore, the right
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hand side of constraints (49) to (69) has to be equal to zero if the corresponding vertex is not included in
the tour and equal to 1, otherwise. This can be obtained by calculating the degree (here: outdegree) for

each vertex. The second part of the subtour elimination constraints [(70) — (79)] is equivalent to (11).
Constraint (80) ensures that the depot is included in the tour.

Since it is not necessary to visit all vertices, we have to introduce vertex-related criteria which have to be
satisfied if it is permitted to skip this vertex. Each vertex not representing the depot or a location within
a picking aisle can be skipped. However, in some cases it is also possible to skip vertices corresponding
to a pick location. The pick locations of a picking aisle 7 are represented by four pairs of vertices. In
order to guarantee that all requested items are contained in the tour, it is sufficient to visit the vertices
nearest to the cross aisles because, in this case, the degree constraints ensure that the other locations
are also visited. Let us consider the two vertices nearest to the front cross aisle which are denoted by
[u,i,1] and [d, 7, 4]. Both vertices represent the same pick location and, therefore, only one of them has
to be included in the tour. If vertex [u, 7, 1] is visited, the next vertex to visit is [u, i, 2], which means that
the variable w;;; has to be equal to one. If [d, 7, 4] is included in the tour, the vertex [d, ¢, 3] has to be
visited before, which implies w;3, = 1. Since picking aisles which do not contain any requested items
can also be skipped, the constraint w;; s + w;3, > 1 must hold for all picking aisles ¢ containing at least
one requested item. This is expressed by the constant b; which is equal to 1 if picking aisle 7 has to be
visited and 0 otherwise. Analogously, the constraints resulting from the pair of vertices nearest to the

rear cross aisle can be constructed. This results in the following two constraints for a picking aisle i:

Wity + wizp > b; (23)
Wity + Wizp > b; (24)

However, another special case exists in which one of these two pairs of vertices is allowed not to be
contained in the tour. This case occurs if the largest gap is not defined by the location of two requested
items but by an item and the adjacent cross aisle. If the corresponding cross aisle is the rear cross aisle,
then the pair of vertices nearest to the rear cross aisle does not have to be visited. In this case, the vertices
[d,i,b], [u,i,4] and [u, i, 3] represent the same location and, therefore, the distance between [d, i, b] and
[u, i, 3], denoted by ¢§,,, is equal to zero. This implies that constraint (24) must hold if and only if ¢§;, > 0
which can be obtained by multiplying both sides of the constraint by c§,, resulting in (82). The same line
of argumentation holds if the front cross aisle is considered. In this case, multiplying constraint (23) by
ci3y leads to (81).

In total, we have O (m) variables and constraints, i.e. the number of variables and constraints increases
only linearly with the number of picking aisles m and is neither dependent on the amount nor on the
location of the requested items. Therefore, it can be assumed that this formulation is far superior to

general TSP formulations if many items are to be picked.
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5 Numerical experiments

5.1 Test design

In order to analyze the proposed formulations, we compare the computing times needed by a commercial
IP-solver for providing optimal solution for a variety of problem classes. In our experiments the number
of picking aisles m determines the size of the warehouse and has been fixed to 5, 10, 15 and 20. Each
picking aisle consists of 90 storage locations (45 on each side). The length of each storage location
amounts to one length unit (LU). Whenever leaving an aisle, the order picker has to move one LU in the
vertical direction from either the first or the last storage location in order to reach the cross aisle. The
distance between two adjacent picking aisles is equal to 5 LU. The depot is assumed to be located in
front of the leftmost picking aisle. For the size of a picking order (number of requested items) 30, 45, 60
and 75 items have been chosen. Moreover, we assume uniformly distributed demands, i.e. each item has

the same probability to be included in a picking order.

Table 1: Size of mathematical programming formulations for the SPRP

(m, n) MTZ GG C HSSW
’ #var #cons #var #cons #var #cons #var #cons
(5, 30) 960 932 1830 992 28830 28892 220 254
(5, 45) 2115 2072 4095 2162 95220 95312 220 254
(5, 60) 3720 3662 7260 3782 223260 223382 220 254
(5,75) 5775 5702 11325 5852 433200 433352 220 254
(10, 30) 960 932 1830 992 28830 28892 460 524
(10, 45) 2115 2072 4095 2162 95220 95312 460 524
(10, 60) 3720 3662 7260 3782 223260 223382 460 524
(10, 75) 5775 5702 11325 5852 433200 433352 460 524
(15, 30) 960 932 1830 992 28830 28892 700 794
(15, 45) 2115 2072 4095 2162 95220 95312 700 794
(15, 60) 3720 3662 7260 3782 223260 223382 700 794
(15,75) 5775 5702 11325 5852 433200 433352 700 794
(20, 30) 960 932 1830 992 28830 28892 940 1064
(20, 45) 2115 2072 4095 2162 95220 95312 940 1064
(20, 60) 3720 3662 7260 3782 223260 223382 940 1064
(20, 75) 5775 5702 11325 5852 433200 433352 940 1064
O(?) 0O’ | O*) O | O@’) O’ | O(m) O(m)

Combination of these parameters gives rise to 16 problem classes. For each class, 30 instances have been
generated, resulting in 480 instances in total. The size of the corresponding formulations is depicted in
Table 1. In the model formulations by Miller et al. (1960) [MTZ], Gavish & Graves (1978) [GG] and
Claus (1984) [C], the number of variables (#var) and constraints (#cons) depends on the number of
requested items n, whereas the size of the newly-proposed formulation [HSSW] is determined by the
number of picking aisles m only. Therefore, it can be assumed that the new formulation for the SPRP
outperforms the other formulations if the ratio - gets large. If we consider the chosen problem classes,

the proposed formulation is superior to the general TSP formulations in terms of number of variables
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and constraints (see Table 1) because the size of the new model formulation increases linearly in the
number of picking aisles. Even for a large number of picking aisles (m = 20) and a quite small number
of requested items (n = 30) — resulting in a very small ratio 7= — the number of variables in the HSSW

formulation is smaller than the number of variables required for the general TSP formulations.

In order to analyze the time required to solve these model formulations, all formulations have been
implemented and solved by CPLEX 12.6. The experiments have been carried out on a desktop PC with
a 3.4 GHz Pentium processor with 8 GB RAM. The computing time for each instance and formulation

has been limited to 30 minutes.

5.2 Results

In the following, the different mathematical programming formulations are evaluated with respect to
the corresponding computing times. Table 2 depicts the number of optimal solutions which can be
obtained within the predefined time interval. The results show that CPLEX — by application of the HSSW
formulation — was able to identify an optimal solution for every instance. In case of the GG formulation,
an optimal solution could be obtained for all instances with up to 45 items to be picked. Using the MTZ
formulation, CPLEX was already unable to obtain optimal solutions for all instances with the smallest
number of requested items. The C formulation leads to optimal solutions for all instances with n = 30.
However, for instances with 60 requested items, the number of optimally solved instances was zero or
close to zero. Furthermore, it should be noted that for the three approaches the number of identified

optimal solutions decreases with an increasing number of picking aisles.

Table 2: Number of solved instances (out of 30) within 30 minutes of computing time

(m,n) MTZ GG C HSSW
(5, 30) 28 30 30 30
(5,45) 19 30 15 30
(5, 60) 3 28 0 30
(5,75) 0 22 0 30
(10, 30) 26 30 30 30
(10, 45) 19 30 13 30
(10, 60) 1 30 0 30
(10, 75) 0 25 0 30
(15, 30) 26 30 30 30
(15, 45) 6 30 7 30
(15, 60) 0 29 1 30
(15,75) 0 21 0 30
(20, 30) 24 30 30 30
(20, 45) 5 30 5 30
(20, 60) 0 26 0 30
(20, 75) 0 11 0 30

In Table 3 the average computing times for the four formulations are presented. Computing times have
only been recorded if the instance has been solved to optimality and, therefore, no information about

computing times is given for some problem classes when the MTZ or the C formulation has been applied.
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Comparing the computing times to each other, the MTZ and the C formulations are outperformed by the
GG and the HSSW formulations significantly. Solving the corresponding formulations based on GG
and HSSW requires only a small fraction of the computing times for the MTZ and the C formulations.
For those problem classes for which the application of the GG and the HSSW formulations were able
to generate an optimal solution for every instance (problem classes with 30 or 45 requested items),

application of the HSSW formulation requires the smallest computing times for most instances.

Table 3: Computing times [sec]
(m,n) MTZ GG C HSSW

(5,30) | 109.18 | 2.65 | 2567 | 0.09
(5,45) | 869.72 | 22.37 | 1169.04 | 0.09
(5,60) | 1666.20 | 453.94 - 0.09
(5,75) - 898.21 - 0.09

(10, 30) 310.62 1.94 114.14 1.60
(10, 45) 991.73 14.59 | 140899 | 1.03
(10,60) | 1750.94 | 90.74 - 1.42
(10, 75) - 482.53 - 1.36

(15,30) | 372.77 | 3.40 | 89.14 | 2.29
(15,45) | 1564.07| 20.20 | 1562.30 | 5.28

(15, 60) - 395.01 | 1761.62 | 10.64
(15, 75) - 1069.54 | - 15.10
(20,30) | 555.07 | 4.05 | 10496 | 10.57
(20,45) | 1649.94 | 36.64 | 1656.18 | 27.32
(20, 60) - 524.44 ; 114.33
(20, 75) - 1551.92| - 216.63

As could be expected with respect to the number of constraints and variables, the computing times
required by the three general TSP formulations increase with the number of requested items (i.e. the
number of vertices in the problem), whereas the computing times required for solving the HSSW
formulation increase with the number of picking aisles. If the number of aisles is small (m = 5), the
application of the HSSW formulation decreases the computing times by a factor between 30 (n = 30)
and 1000 (n = 75) compared to the best general TSP formulation. With an increasing number of aisles
the computing times required for solving the HSSW formulation also increase. However, even in case
of a small ratio -, only the formulation by GG outperforms the HSSW formulation. For a large number

of aisles (m = 20) and requested items (n = 75) the computing times can be decreased by a factor of 7.

The results further show that computing times required for the solution of the HSSW formulation are
larger when the number of requested items increases, even though the number of arcs and vertices of
the modified graph is independent of the number and the location of requested items. This is due to two
reasons: First, constraints (81) and (82) are redundant for a picking aisle 7 if b; = 0, i.e. if picking aisle ¢
does not contain any requested item. The less items have to be picked, the smaller the probability gets
that a large number of picking aisles has to be visited. Second, a large number of requested items results
in many solutions almost as good as an optimal solution and, therefore, proving optimality gets quite

time consuming.
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6 Conclusion and Qutlook

In this article, a new mathematical programming formulation for the Single-Picker Routing Problem
— a special variant of the Traveling Salesman Problem — was proposed. This formulation adopts the
properties of optimal solutions for the Single-Picker Routing Problem in a single-block layout. It could
be shown that the proposed formulation is advantageous with respect to the size (expressed in number of
variables and number of constraints) of the resulting model which only depends on the number of aisles

and not on the number of items to be picked.

In a series of numerical experiments this formulation is compared to more general state-of-the-art
formulations for the Traveling Salesman Problem. The computing times necessary to solve the newly
proposed formulation outperform those required for the more general formulations for the Traveling
Salesman Problem. Moreover, we were able to find optimal solutions for instances which could not
be solved by means of the general formulations. The numerical results clearly indicate that for special
cases of the Traveling Salesman Problem which can be solved in polynomial time, the application of

customized formulations is necessary in order to obtain optimal solutions within small computing times.

This work focused on a single-block layout. It is possible to extend the formulation for layouts with
multiple blocks. In this case, it is necessary to extend the modified graph. For each block of the warehouse
a copy of the modified graph has to be added (except for the vertex representing the depot). Furthermore,
vertices and arcs representing a change of a block have to be added for each possible location where a

picking aisle can be entered from a middle cross aisle.

For the proposed formulation it is assumed that order pickers can overtake each other (wide-aisle).
Therefore, the tours through the warehouse can be determined independently from each other. In
narrow-aisle warehouses aisles can be blocked by an order picker or traffic jams can occur caused
by order pickers having to collect an item from the same storage location. For this purpose the proposed
formulation can be combined with the optimization model for the Order Batching Problem suggested by
Hong et al. (2012) which takes blocking considerations into account. However, the application of this
model is restricted to warehouses in which one-way travel within picking aisles is allowed only and,
therefore, the routing problem with consideration of picker blocking aspects would also be an interesting

topic for further research.
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Appendix: Model formulation for the SPRP

Sets:
I=A{1,...,
F={f0b}:
Constants:
1,
bi -
0,
c*:

m}:

set of picking aisles

set of cross aisles

if picking aisle 7 € I contains at least one requested item

otherwise

distance between two adjacent aisles

¥:  distance between the depot and the location on the front cross aisle where the first picking aisle

can be entered

5,,: distance between front cross aisle (v = f) and vertex [d,i,s] (s € {1,3}) or rear cross aisle

(av = b) and vertex [u, 4, s in picking aisle ¢ € [

ct . distance between front cross aisle (o« = f) and vertex [u, i, 1] or back cross aisle (o = b) and vertex

[d, 1, s] in picking aisle i € [

distance between location s € {1, 2, 3} and location s + 1 in picking aisle i € [

large number (e.g. number of vertices)

Binary variables indicating the edges included in the tour:

L,
P =
0,
w 1’
Tip =
0,
1,
ri =
f 0,
L — L,
0,
w 1’
eib =
0,

ifedge ([r,i,al,[r,i+1,a]) is contained in the tour .
(t,a) e I\ {m —1,m}) x F
otherwise

ifedge (|r,i,0|,|d,i+ 1,b]) is contained in the tour ,
ge ([r.i,b].[d,i+ 1,b) e o

otherwise

ifedge (|r,e, f|, |u,i+ 1, is contained in the tour
ge (i, 1. lusi+1./) e

otherwise

ifedge ([¢,i,a],[¢,i —1,«]) is contained in the tour

(i,a) € (F\{1,2}) x F)U (2, f)

otherwise

ifedge ([¢,4,b],[d,i — 1,b]) is contained in the tour .
iel\{1}

otherwise
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L,
lip =
0,
L
tip =
0,
L,
Wisp =
0,
L,
Wisf = {
L,
Vg =
0,
L
0,
L,
Ufb =
0,
L,
0,

ifedge ([¢,i, f],[u,i — 1, f]) is contained in the tour

otherwise

ifedge ([d,i,b],[u,1,s]) is contained in the tour

otherwise

ifedge ([u,i, f],][d,i,s]) is contained in the tour

otherwise

ifedge ([d,i,b],[d,i,1]) is contained in the tour

otherwise

ifedge ([u,1, f],[u,i,1]) is contained in the tour

otherwise

ifedge ([d,i,s],[d,i,s+ 1]) is contained in the tour

otherwise

ifedge ([u,i,s|,[u,i,s+ 1]) is contained in the tour

otherwise

ifedge ([u,i,4],[r,i,b]) is contained in the tour

otherwise

ifedge ([d,i,4],[r,i, f]) is contained in the tour

otherwise

ifedge ([u,i,4],[¢,,b]) is contained in the tour

otherwise

ifedge ([d,i,4],[¢,1, f]) is contained in the tour

otherwise

ifedge ([0], e, 1, f]) is contained in the tour

otherwise

ifedge ([, 1, f],[0]) is contained in the tour

otherwise

ie I\ {1}

(1,8) € I x {1,3}

(1,8) € I x {1,3}

1el

(i,) € I x {1,2,3}

(i,s) € I x {1,2,3}

i€ I\ {m}

i\ {m})

ie I\ {1}

ae{l,r,u}
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Real-valued variables to exclude subcycles:
Tias (o) € (I\N{m —1,m}) x F

Tias (i,a) € (I\{m}) x F

i ()€ (I\N{L,2}) x F)U (2, f)
e, (o) e (I\{1}) x F

Cisar (i,5,0) € I x {1,3} x F

tia, (i,a) €I XF

Wisa, (iys,0) € I x {1,2,3} x F

Ui (1) € (I\{m}) x F

Uiy (1,0) € (I\{1}) x F)U(L, f)

70, ae{l,ru}

Objective function:

m—2
min Z Z e (ri, i)+t ZT:ZA a
i=1 acF acl
+i20a (Efcﬁ—f;’;)—l—c“ ng+c“ Zﬁ;"a
=3 aclF acl
+ Z Z Z Cfsa Cisa + Z Z Cfa twé
i=1 se{1,3} a€F i=1 a€F
m m—1
ZZZ Cisa wisa—i_zzcza.v;{‘a
i=1 s=1 aeF i=1 aeF
chza Uza + clf Ulf
=2 acl
+c - (4 + )+ yl + %) (25)

Degree constraints:

* constraints corresponding to the depot

w A+ + Yl =y, (26)
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« constraints corresponding to vertices [r, i, o]
T:a—f—rzlév:v;a_’_r;—l,a \V/(l,Oé) € (I\{Lm_l)m}) X F (27)
7ﬁrur}L—l,oz = v:n—l,a + r::n—la Va € F (28)
Ty =i+ 0 (29)
T T = Uy (30)
» constraints corresponding to vertices [/, i, o]

G+ 08 = vl + 00, V(i,a) € (I\{1,2,m})x F (31
lnec T s = Vina VaeF (32)
0y, = vhy + 5, (34)
yg:yg+vff+£gf (35)

* constraints corresponding to vertices [u, ¢, f] and [d, i, b]
tio + €ita T €30 = 11 4 + 01 4 V(i,a) € (I\{2,m}) x F (36)
tma + €mia + €m3a = T;U—L_La Va e F (37)
tip +e11y + €13y 2924-55} (38)
tip + €11p + €13 = Ly, (39)

* constraints corresponding to vertices [u, ¢, 4] and [d, 7, 4]
v vl = wisa V(i,a) € (I\{2,m}) x I (40)
Uy = Win3a Vae F' (41)
'UIf + 'Uff = UJ13f (42)
UIb = W13p (43)

* constraints corresponding to vertices [u, 7, s|] and [d, i, $]
winp =t + ey Viel (44)
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ib
wity =1 + €15
Wi2er = Wil
Wiz = Wigf 1 €i3p

Wigp = Wizp + €43

Subtour elimination constraints:

« constraints corresponding to vertices [r, i, &

~T ot ~T ~w _ T
Vig T Ti_1.q — (7l +Tia) =7

~r ~r ~w _w
Umfl,a + rm72,o¢ - 7ﬁmfl,oz - rmfl,a
~r ~0 ~r ~w\ __ T w
Ui+ 90— (Fp + 7)) =i+

~r ~r ~w\ __ .T w
U1y — (Flp +715) = 71 + 11
» constraints corresponding to vertices [/, i, «]

U +€z+1a - (gfa—i—g%z) :gfa_’—[g&

o= (Brsa 0) = b + G

i+ Uy — Uy = 03

* constraints corresponding to vertices [u, ¢, f] and [d, i, b]

T 1 N + g@-}-l « (t’wz + éila + éi3o& tza + €i1a T €i3a

~w
Tm—l,oa

- (tma + émla + ém&a tma + €mla T €m3a

7o + 05y — (Tay + Evg + E1ap) = iy + enng + exsy
@Ub - (7?1,, + e+ él3b) t1p + €11 + €13p

* constraints corresponding to vertices [u, ¢, 4] and [d, 7, 4]

~ ~T ~0\ _ 7 l
Wiz, — (Uia =+ Um) = Vi T Vg

~, ~{ y4
Wm3a =~ Uma = Una

V(i,a) €

V(i,a) €

Viel
V(i,a) € I x F
Viel

Viel

(I\{l,m—1,m}) x F

Va e F

(I\{1,2,m}) x F

Va e F

V(i,a) € (I\{2,m}) x F

Va e F

e (I\{2,m})x F
Va e F

Y (1, )

(45)
(46)
(47)

(48)

(49)
(50)

(D
(52)

(53)
(54)
(55)

(56)

(57)
(58)
(39)

(60)

(61)
(62)
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Wig — (05y +T1p) = vip + iy (63)
U~113b - 6{1) - 'U{b (64)
* constraints corresponding to vertices [u, 7, s| and [d, 7, ]
fif + €;1p — (wilf) = Wi Viel (65)
0+ &g — Wiy = Winy Viel (66)
Wila — Wiza = Wiz V(i,a) e I x F (67)
Wigy + €i3p — Wizf = Wizf Viel (68)
Wigp + €i3f — Wizp = Wiz Viel (69)
* constraints to link variables
T, < M-rl, V(i,a) € (I\{m—1,m}) x F (70)
Tioy < M 15 V(i,a) € (I\{m})x F (71)
Bo<M-f, Vi) e (IN{L2)xF)UEf) (72)
v < M- V(i,a) e (I\{1}) x F (73)
Cisa < M - Cisa V(i,S,Oé) el x {1,3} x F (74)
tia < M -ty V(i,a) e I x F (75)
Wisq < M - W;gq V(i,s,a) € I x {1,2,3} x ' (76)
Ui < M - g, V(i,a) € (L \{m}) x ' (77)
Ui < M - vj, V(i,a) € (I\{1H) x F)U(L f) (78)
7P < M-y Vae{l,r,u} (79)
Depot inclusion constraint:
y oyl Yo > 1 (80)
Item inclusion constraints:
Cigp + (Wiry + wizp) > by - ciyp Viel (81
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Ciap + (Wiry + wizy) > b; - i3y Viel (82)

Constraints for the domains of the variables:

e {0,1} V(i,a)e (I\{m—1,m})x F  (83)
re e {0,1} V(i,a)e (I\{m}) x F  (84)
lio € {0,1} V(i) € (UN{1,2}) x F)U(2,f)  (85)
e e {0,1} V(i,a)e (I\{1}) x F  (86)
€isa € {0,1} V(i,s,0) e I x {1,3} x F (87)
tia € {0,1} V(i,a)e I x F  (88)
Wiso € {0,1} V(i,s,0) € I x{1,2,3} x F  (89)
or, € {0,1} V(i,a) e (I\{m})x F  (90)
vio € {0,1} V(i) e (I\N{1}) x F)U(1,f) O
y? €{0,1} Vae{l,r,u}  (92)
yo € {0,1} (93)
>0 V(i,a)e (I\{m—1,m})x F  (94)
o >0 V(i,a)e (I\{m})x F  (95)
lia >0 V(i) € (I\{L,2}) x F)U(2,f)  (96)
e >0 Y(i,a) € (I\{1}) x F  (97)
Eisa > 0 V(i,s,a) € I x {1,3} x ' (98)
tia >0 V(i,a) eI x F  (99)
Wise > 0 V(i s,0) € I x{1,2,3} x F (100)
o, >0 Y(i,a) e (I\{m})x F (101)
o, >0 V(i) € (I\{1}) x F)u(L,f) (102)

o >0 VYae {l,r,u} (103)
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