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Modeling and estimating the loss given default (LGD) is necessary for banks

which apply for the Internal-Ratings Based Approach for retail portfolios. To

validate LGD estimations there are only very few approaches discussed in

the literature. In this paper, two models for validating relative LGDs and

absolute losses are developed. The validation of relative LGDs is important

for risk-adjusted credit pricing and interest rate calculations. The validation

of absolute losses is important to meet the capital requirements of Basel II.

Both models are tested with real data of a bank. Estimations are tested for

robustness with in-sample and out-of-sample tests.
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1 Introduction

According to Basel II, banks can choose between two approaches to measure their credit

risk, the Standardised Approach (STA) and the Internal-Ratings Based Approach (IRBA).

So-called IRBA banks have to underlay credits with equity depending on the unexpected

loss (UL) according to Equation (1):1

UL =

relative unexpected loss︷ ︸︸ ︷[
N

(
N−1(PD) +

√
𝑅 ⋅ N−1(0,999)√
1−𝑅

)
⋅ LGD︸ ︷︷ ︸

maximum loss

−PD ⋅ LGD︸ ︷︷ ︸
expected loss

]
⋅EAD. (1)

The unexpected loss equals the difference between the so-called maximum loss, which is

computed as the value at risk of the loss, and the expected loss, which is computed as

the product of probability of default (PD) and loss given default (LGD). Here, 𝑅 denotes

the correlation coefficient of the PD with the systematic risk factor. The product of the

so computed relative unexpected loss and the exposure at default (EAD) results in the

unexpected loss in monetary units.

According to Article 87 No. 6 and 7 of the Capital Requirement Directive (CRD),2

banks have to estimate PD and LGD for retail claims or contingent retail claims on

their own. Furthermore, the estimation procedures have to be validated for robustness

and accuracy of the models. This validation should transcend the simple comparison of

historical data with estimated parameters as it is mentioned in Annex VII, Part 2 No.

112 CRD. While validation techniques for PD estimations are discussed extensively in the

literature, research on quantitative validation instruments for LGD estimation models is

rare.

Validating LGD estimations is crucial because the required capital reacts more sensitive to

changes in LGD as to changes in PD. For demonstration, the LGD and the PD elasticities

of UL are shown in Figure 1.3 The LGD elasticity is constant and amounts to one.

However, the PD elasticities for the shown subcategories for retail claims (up to a PD of

50 percent) are absolutely smaller than the LGD elasticity. Therefore, the risk weighted

assets react more sensitive on changes in LGD.4 Thus, the high sensitivity of the risk

weight function with respect to the LGD (in the relevant PD range up to 50 percent)

1N indicates the standard normal distribution function and N−1 indicates the inverse of N.
2Directive 2006/48/EC of the european Parliament and of the Council.
3The right hand side of Equation (1) is multiplied by factor 12.5 in Figure 1, so that the UL equals the
risk weighted assets.

4The partly negative PD elasticity shown in Figure 1 results from the fact that with an increasing PD
the unexpected loss becomes smaller and the expected loss, which reduces the capital requirement,
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Figure 1: PD and LGD Elasticity of the Risk Weighted Assets for the Retail IRB Ap-
proach

implies the necessity for precise estimations of LGDs.5 An evaluation of the accuracy of

LGD estimations can be done by the technique of validation.

Our paper is organized as follows: After a brief review of the literature of different LGD

estimation models, two validation models are developed in Section 2. For an empirical

analysis, real data from a bank are used. Section 3.1 describes the data and empirical

analysis and Section 3.2 reports the results. Section 4 concludes.

2 LGD-Validation

2.1 Literature Review

There are four different approaches to compute the LGD: Workout LGD, Market LGD,

Implied Market LGD, and Implied Historical LGD.6

The Workout LGD belongs to the so-called explicit methods of LGD estimation. ”Ex-

plicit” here refers to the used data. Explicit methods use historical LGDs of defaulted

rises. Expected losses are considered by depreciations, provisions or write-offs and, therfore, no capital
underlay is required.

5Despite the higher LGD sensitivity within the relevant range, this does not imply a less precise or less
robust estimation of PD.

6See Basel Committee on Banking Supervision (2005), pp. 61-62.
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credits in order to derive prognoses for future LGDs. The Workout LGD is cash flow-

oriented.7 To compute the Workout LGD, all recoveries as well as all costs are considered

in the period from the day of the credit event up to final recovery. In order to consider dif-

ferent points in time where costs and recoveries emerge, payments have to be discounted

to the day of the credit event. Therefore, the Workout LGD is computed as follows:8

LGD𝑖 =

EAD𝑖 −
𝑛∑

𝑗=1

𝐸𝑖,𝑗(𝑟) +
𝑚∑
𝑘=1

𝐾𝑖,𝑘(𝑟)

EAD𝑖

= 1−

𝑛∑
𝑗=1

𝐸𝑖,𝑗(𝑟)−
𝑚∑
𝑘=1

𝐾𝑖,𝑘(𝑟)

EAD𝑖

𝐸𝑖,𝑗(𝑟) = discounted recoveries 𝑗 of credit 𝑖

𝐾𝑖,𝑘(𝑟) = discounted costs or losses 𝑘 of credit 𝑖

𝑟 = discount rate (2)

Typical recoveries are collaterals or securities.9 Examples for costs and losses are a loss

on interest payments, opportunity costs for equity, handling costs, and workout costs like

overhead costs of the recovery departement.10

The discount rate to determine the economic loss has to be risk-adjusted. In particular,

for parameters such as collaterals or workout costs no market exists. Therefore, the

determination of the discount rate is difficult. If historical interest rates are used, the

risk-free interest rate plus a loss impact or the initially agreed interest rate can be used.11

After computing the Workout LGD, the estimation model can be developed using regres-

sions for example.12 The independent variables that should be used here depend on the

institute and branch. Commonly accepted variables are for example provisions of security,

7See Kaltofen (2006), pp. 38-39.
8See Basel Committee on Banking Supervision (2005), p. 66.
9Especially for tangible fixed assets, for example real estates or machines, market prices can change
until the collateral utilization. Therefore, haircuts should be computed to consider this loss in value.
See also Basel Committee on Banking Supervision (2005), p. 67.

10See Oesterreichische Nationalbank/Finanzmarktaufsicht (2004), p. 151, 165.
11Brady, Chang, Miu, Ozdemir & Schwartz (2006) empirically show that discount rates significantly

differ for different branches of industry and ratings. The determined discount rate ranges from 0.9 to
29.3 percent.

12Hamerle, Knapp & Wildenauer (2006) use a two stage regression. Siddiqi & Zhang (2004) assume
that the LGD is beta-distributed and transform the LGD into a normal-distributed variable before
estimation.
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repayment priority, industry affiliation, macro-economic factors like economic growth or

ratings.13

A further explicit method to determine the LGD is the so-called Market LGD method.

In this approach, market prices of publicly traded defaulted loans or securitized credits

are used. After a default, the recovery rate can be determined by the market value of the

loan because investors anticipate possible proceeds from realizations as well as possible

costs. Thus, loss results as the difference between the par offering price and the market

price after default. For publicly traded loans, these data are collected by rating agencies.

The charm of this concept is made up of the fact that only the recovery rate is needed

for the LGD computation. However, this recovery rate corresponds to the market price

after default for initially priced at par loans.

In this approach, it is critical that several parameters are based on subjective estimates.

It remains doubtful, which time horizon should have been taken after the point in time

of default of the loan, at that all investors anticipate possible earnings and costs.14 In

addition, internal workout costs of the bank are not reflected by the market price.15

Moreover, market prices are not only influenced by supply and demand. Therfore, on

illiquid markets, the use of market prices can lead to false estimates of the LGDs.

After computation of the Market LGD, the development of the estimation model follows

similarly to the Workout LGD. A well-known model for the LGD estimation based on

Market LGDs is LossCalc 2.0 from Moody’s KMV.16

The Market LGD is only suitable for securitized loans or credits due to the need of market

data. Not considered workout costs have to be integrated by an adjustment of the LGDs.

Therefore, internal institute data are required. But then again, the Workout LGD can be

used.

A further possibility to determine the LGD is the Implied Market LGD, which belongs to

the implicit methods. Non-defaulted securitized loans or credits form the data base for

this approach. Here, it is assumed that the spread between a loan-specific interest rate

and the risk-free interest rate equals the expected loss in percent. If the spread is known

the LGD results from the ratio of spread and default probability.17 This concept is based

on the model of Jarrow, Lando & Turnbull (1997). The value of a loan 𝑉 equals the value

of a loan without risk 𝑉𝑟𝑓 multiplied with the probability of a non-default plus the value

13For more examples and analyses of influencing factors see Schuermann (2005) and Böttger, Guthoff &
Heidorn (2008).

14Moody’s for example uses a time horizon of one month after default. See also Gupton (2005).
15See Oesterreichische Nationalbank/Finanzmarktaufsicht (2004), p. 160.
16Gupton (2005) gives an overview of the modeling and procedure of LossCalc 2.0.
17See Böttger, Guthoff & Heidorn (2008).
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of a loan without risk multiplied by the recovery rate (RR) and the probability of default.

Then, the following valuation equation holds for risky bonds:18

𝑉 = 𝑉𝑟𝑓 ⋅ (1− PD) + 𝑉𝑟𝑓 ⋅ PD ⋅ RR. (3)

Implied Market LGD models differ only in the statistic modeling of the parameters of

Equation (3) and different interpretations of the recovery rate. In general, there are three

possible interpretations: the recovery rate is defined as a portion of the issue price, a

portion of the current present value and a portion of the value of the loan shortly before

default.19

Madan & Unal (2000) and Bakshi, Madan & Zhang (2006) use a hazard process in order

to model the default probability. The recovery rate as well as the process of the risk-

free interest rate term structure are modeled by stochastic processes.20 Also, the use of

alternative interest rate spreads is discussed.21

For the Implied Market LGD, the decomposition of the interest rate spread into its com-

ponents is crucial. Since the interest rate spread may contain a liquidity premium as well

as a risk premium for the unexpected loss, the applied asset pricing models must be able

to determine the single components separately.22

The Implied Historical LGD is also a concept of the implicit LGD determination. Ac-

cording to the Basel Committee on Banking Supervision, the use of the Implied Historical

LGD is only allowed for retail portfolios.23 According to this approach, banks are allowed

to determine their LGDs on the basis of PD estimations. The data base consists of his-

torical loss data of retail portfolios. Here, the LGD of a retail credit is computed similarly

as for the case of the Implied Market LGD: EL = PD ⋅ LGD.

2.2 Proportional Decomposition of the Credits

As seen in the previous section, especially for retail claims, the discussed concepts of LGD

computations are developed on already defaulted credits. If realized LGDs are known

a validation model should use those realized LGD as a benchmark for LGD estimation

18See Jarrow, Lando & Turnbull (1997).
19See Bakshi, Madan & Zhang (2006).
20For a detailed overview of the modeling of the single parameters see Ong (1999), pp. 61-92.
21For the use of credit default swap spreads to determine implicit recovery rates see Pan & Singleton

(2008) and Das & Hanouna (2007).
22See also Böttger, Guthoff & Heidorn (2008).
23See Basel Committee on Banking Supervision (2004), paragragh 465.
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models. This idea is also used in PD validation.24 Therefore, the basic idea of the following

validation models is to use well known PD validation techniques for LGD validation

purposes. Firstly, transformed ratios of the PD validation, e.g. Area under Curve (AUC)

or Accuracy Ratio (AR), are computed for realized LGDs. Since the interpretation of

these ratios is different as for the PD validation, one has to compare the ratios generated

on realized LGDs with those ratios generated on estimated LGDs. As a result, the quality

of the LGD estimation model does not depend on the ratio itself but on the comparison

of the ratios of realized and estimated LGDs. The estimation model fits better, the more

equal the compared ratios are.

In order to simplify the interpretation of the following model, an exemplary retail portfolio

of a bank is analyzed. At first, the technique of proportional decomposition is developed on

this exemplary retail portfolio. Subsequently, the model is applied to real data. Assume,

the portfolio consists of 100 credits with individual EADs and losses. The number of

defaulted credits amounts to 54 with a total loss of 600,000 euros. The total EAD adds up

to three million euros, which results in an average LGD of 20 percent according Appendix

E.

Each EAD is divided into 𝑛 portions of equal size.25 The number of portions should

realign to the EAD amount.26 For every portion 𝑖 = 1,...,𝑛 of credit 𝑘 = 1,...,𝐾, a binary

variable d𝑖,𝑘 is defined as follows:

d𝑖,𝑘 =

⎧⎨
⎩1 if portion 𝑖 of the EAD𝑘 is defaulted

0 if portion 𝑖 of the EAD𝑘 is not defaulted.
(4)

Furthermore, a second binary variable nd𝑖,𝑘 is defined by nd𝑖,𝑘 ≡ 1− d𝑖,𝑘. Credit 1 of our
exemplary retail portfolio is not defaulted. Therefore, all d𝑖 possess a value of zero and all

nd𝑖 possess a value of one. For credit 12, the variables d1 to d462 possess a value of one and

the variables d463 to d1000 possess a value of zero.
27 After computing the variables d𝑖 and

nd𝑖 for all credits 𝐾, the variables are added up for each portion. Therefore, D𝑖 ≡
𝐾∑
𝑘=1

d𝑖,𝑘

represents the number of credits where portion 𝑖 is defaulted. Similarly, ND𝑖 is defined as

24See Engelmann et al. (2003a) and Keenan & Sobehart (1999) for a detailed overview of PD validation
techniques.

25If 𝑛 = 100 is selected the decomposition corresponds to a percental decomposition, for 𝑛 = 1,000 it
corresponds to an one-tenth of a percent decomposition.

26If the portfolio consists of credits with EADs below 1,000 euros, a more precise decomposition than 𝑛
= 1,000 makes little sense, since every portion then corresponds to an amount of less than one euro.
For our exemplary retail portfolio, 𝑛 = 1,000 was selected. Here, the resulting portion amounts to
51.60 euros in maximum.

27The number 462 was rounded. For a more precise decomposition, the deviation converges to zero.
In our case, the deviation of the loss due to rounding amounts to 2.80 euros and lies thereby in a
negligible range.
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ND𝑖 ≡
𝐾∑
𝑘=1

nd𝑖,𝑘 and corresponds to the number of credits where portion 𝑖 is not defaulted.

As a consequence, the sum of D𝑖 and ND𝑖 for each portion must be equal to the number

of credits. The results for our exemplary retail portfolio are shown in extracts in Table 1.

Table 1: Proportional Decomposition of our Exemplary Retail Portfolio

portion 𝑖 in� D𝑖 ND𝑖

1 54 46
2 54 46
3 54 46
4 54 46
5 54 46
...

...
...

450 12 88
451 11 89
452 11 89
453 9 91
454 8 92
455 8 92
456 8 92
457 8 92
458 8 92
459 8 92
...

...
...

996 3 97
997 3 97
998 3 97
999 3 97
1000 3 97

The decomposition in Table 1 is based on the assumption that all credits exhibit an LGD

smaller or equal to one. However, this is not always ensured. For credits with high

workout costs and small EADs, LGDs above one are possible. In order to prevent this,

the variables d𝑖 and nd𝑖 can be redefined as follows:

d𝑖,𝑘 =

⎧⎨
⎩1 if portion 𝑖 of the double EAD𝑘 is defaulted

0 if portion 𝑖 of the double EAD𝑘 is not defaulted.
(5)

With this redefinition, credits with LGDs smaller or equal to 200 percent are possible.28

The further computations take place similarly to the model with simple EADs.

28To reduce rounding errors, the number of portions should be increased when increasing the permitted
LGD.
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Analogously to measures of the accuracy of rating functions, hit rates and false alarm

rates can be computed for each portion. The interpretation of these rates are, however,

not equal to those of rating functions. The hit rate hr𝑖 and the false alarm rate far𝑖 are

computed as follows:

hr𝑖 =
D𝑖
𝑛∑

𝑖=1

D𝑖

far𝑖 =
ND𝑖
𝑛∑

𝑖=1

ND𝑖

. (6)

The hit rate hr𝑖 is the fraction of portion 𝑖 of all defaulted portions. The false alarm rate

far𝑖 is the fraction of portion 𝑖 of all portions, which are not defaulted. If the hit rates

and the false alarm rates are summed up the cumulated hit rate HR𝑗 and the cumulated

false alarm rate FAR𝑗 for portion 𝑗, respectively, result:29

HR𝑗 =

𝑗∑
𝑖=1

hr𝑖 FAR𝑗 =

𝑗∑
𝑖=1

far𝑖

=
𝑗

𝑛
⋅ LGD𝑗

LGD
=

𝑗

𝑛
⋅ RR𝑗

RR

where where

LGD𝑗 =

𝑗∑
𝑖=1

D𝑖

𝑗 ⋅𝐾 RR𝑗 =

𝑗∑
𝑖=1

ND𝑖

𝑗 ⋅𝐾

LGD =

𝑛∑
𝑖=1

D𝑖

𝑛 ⋅𝐾 RR =

𝑛∑
𝑖=1

ND𝑖

𝑛 ⋅𝐾 . (7)

The cumulated hit rate, thus, corresponds to the ratio of the average LGD of the first

𝑗 portions (denoted by LGD𝑗) to the average LGD over all portions (denoted by LGD),

multiplied by a weighting factor. The cumulated false alarm rate corresponds to the ratio

of the average RR of the first 𝑗 portions (denoted by RR𝑗) to the average RR over all

portions (denoted by RR), multiplied by the same weighting factor. The average Loss

Given Defaults LGD𝑗 and average Recovery Rates RR𝑗 are unweighted. This implies the

advantage that LGDs can be validated without any influence of the size of the EADs.

Thus, it can be ruled out that banks arrange their models so that LGDs of credits with

high EADs are estimated more precisely while estimations for credits with smaller EADs

are imprecise. The LGD for our exemplary retail portfolio equals 18.423 percent.

The Receiver Operating Characteristic (ROC) curve evolves by plotting the cumulated

hit rates against the cumulated false alarm rates. This curve shows the homogeneity of

the credit portfolio with respect to the LGDs. The more steeply it runs, the more homo-

29For the derivation see Appendix A.
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geneous are the LGDs of single credits. If all credits have the same LGD, the portfolio is

perfectly homogeneous concerning the LGDs. Thus, the ROC curve runs vertically along

the y axis and then horizontally at the level of 1. If the credit portfolio consists of two

disjunct quantities, one with credits, that have an LGD of 100 percent and the other with

only non defaulted credits, the portfolio is perfectly heterogeneous and the ROC curve

possesses a slope of one. Since the latter portion can only default if the first one also

defaults, D𝑖 cannot be larger than D𝑖−1. Therefore, the ROC curve is linear in sections

but overall concave. For our example, a ROC curve arises according to Figure 2.

Figure 2: ROC Curve of the Exemplary Retail Portfolio

0
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0,6

0,8

1

-0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
FAR

H
R

ROC curve of the exemplary retail portfolio ROC curve of heterogeneous portfolio
ROC curve of homogeneous portfolio

The Area Under Curve (AUC) provides similar information like the ROC curve. It cor-

responds to the probability that the rank of a defaulted portion
(
RankdPor

)
is higher than

the rank of a non-defaulted portion
(
RankndPor

)
plus half of the probability that the rank

of a defaulted portion is the same as a non-defaulted:30

AUC =
𝑛∑

𝑖=1

(
(FAR𝑖 − FAR𝑖−1) ⋅ HR𝑖 +HR𝑖−1

2

)

=
𝑛∑

𝑖=1

(
far𝑖 ⋅ HR𝑖 +HR𝑖−1

2

)
. (8)

30See Bamber (1975) for a derivation in the context of the accuracy of discriminative power.
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In probabilistic terms, AUC reads as:

AUC =
𝑛∑

𝑖=1

(
Prob(RankndPor = 𝑖) ⋅ Prob(Rank

d
Por ≤ 𝑖) + Prob(RankdPor ≤ 𝑖− 1)

2

)
= Prob(RankdPor < RankndPor) + 0.5 ⋅ Prob(RankdPor = RankndPor). (9)

AUC equals one for a perfectly homogeneous portfolio. For a perfectly heterogeneous

portfolio AUC becomes 0.5. The AUC of our exemplary retail portfolio shows a value of

0.8342.

Another well-known validation measure is the Cumulative Accuracy Profile (CAP) curve.

The CAP curve measures, analogously but not equal to the Lorenz curve, the degree

of inequality, i.e. how the hit rates are distributed over all portions. Therefore, the

cumulated hit rates are plotted against the cumulated portions. The CAP curve, like the

ROC curve, is linear in sections but overall concave. If the hit rates are equally distributed

over all portions, the CAP curve possesses a slope of one and the portfolio is perfectly

heterogeneous. If all credits have the same LGD, the portfolio is perfectly homogeneous

and the CAP curve runs linearly rising up to the unweighted average LGD and then

horizontally. For our exemplary retail portfolio, a CAP curve results in accordance with

Figure 3.31 Additionally, an inequality coefficient can be formed analogously to the Gini

coefficient. In order to retain the notation of the accuracy measures for rating functions,

the coefficient is called Accuracy Ratio (AR) and is computed as follows:32

AR =

𝑛∑
𝑖=1

(
1
𝑛
⋅ HR𝑖+HR𝑖−1

2

)
− 0.5

1− 0.5− LGD
2

=

2 ⋅
𝑛∑

𝑖=1

HR𝑖 − 1− 𝑛

𝑛 ⋅ (1− LGD) . (10)

AR increases the more unequal the hit rates are distributed over all portions, i.e. the more

homogeneous the portfolio is with respect to its LGDs. For a perfectly heterogeneous

portfolio the AR becomes zero, for a perfectly homogeneous portfolio AR equals one.

Furthermore, the relationship between AUC and AR is AR = 2⋅AUC−1.33 Our exemplary
retail portfolio possesses an AR of 0.6683.

31The CAP curve of the perfectly homogeneous portfolio corresponds to a portfolio with an unweighted
average LGD (LGD) of 18.423 percent.

32See Appendix B for the derivation. For the functional relationship between Gini coefficient and AR
for rating functions see Rauhmeier (2004), pp. 129-130.

33This relation is well-known for the accuracy measure of rating functions. For a proof with respect to
our LGD framework see Appendix C.
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Figure 3: CAP Curve of the Exemplary Retail Portfolio
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The ROC curve, the CAP curve, AUC and AR of the realized LGDs provide a benchmark

for the parameters and curves of the data set of the LGD estimation model, which have

to be computed similarly. Afterwards, the results of both data sets can be compared with

each other. Nevertheless, it has to be considered that the interpretations of ROC, CAP,

AUC and AR in our LGD framework differ from the interpretation of these measures in

the framework of rating accuracy. There are no perfect curves. Rather the parameters

and curves of the LGD estimation model should deviate as few as possible from those

of the historical data set. If the AUC and AR of the realized and estimated LGDs are

almost equal, then the LGD estimation model can be seen as a good forecast tool for

future LGDs.

ROC curves can intersect each other. In this case, area differences might be compensated.

It can happen that the data sets of the historical, already realized, losses and of the LGD

estimation model possess the same AUC and AR but the results of the LGD estimation

model are not related with the historical loss data set. Therefore, a modified AUC, that

we call MAUC, should be computed additionally, where MAUC equals the sum of the

12



absolute values of the area differences for each portion 𝑖:

MAUC =
𝑛∑

𝑖=1

∣∣∣∣∣
((
FARhist𝑖 − FARhist𝑖−1

) ⋅ HRhist𝑖 +HRhist𝑖−1
2

)

−
((
FARest𝑖 − FARest𝑖−1

) ⋅ HRest𝑖 +HRest𝑖−1
2

)∣∣∣∣∣
where

FARhist𝑖 = false alarm rate of portion 𝑖 of the historical loss distribution

FARest𝑖 = false alarm rate of portion 𝑖 of the estimation model

HRhist𝑖 = hit rate of portion 𝑖 of the historical loss distribution

HRest𝑖 = hit rate of portion 𝑖 of the estimation model. (11)

A goal within validation should be to develop LGD estimations that minimize the value

of MAUC.

In order to create a figure that measures AUC differences of the two ROC curves of the

historical and estimation data set, we compute the following single AUC𝑖:

AUC𝑖 = (FAR𝑖 − FAR𝑖−1) ⋅ HR𝑖 +HR𝑖−1
2

= far𝑖 ⋅ HR𝑖 +HR𝑖−1
2

. (12)

Afterwards, we suggest the following linear regression:

AUChist𝑖 = 𝛼 + 𝛽 ⋅ AUCest𝑖

where

AUChist𝑖 = AUC𝑖 of the historical loss distribution

AUCest𝑖 = AUC𝑖 of the estimation model. (13)

If the LGD estimation model perfectly forecasts future LGDs, 𝛼 should be zero and 𝛽

should be one. If 𝛼 is signicantly different from zero, there is a bias in the LGD estimation.

A further linear regression with suppression of the location parameter shows whether the

AUC of the historical data set is, on average, systematically underestimated (𝛽 > 1) or

overestimated (𝛽 < 1). A measure of the quality of the estimation model is the coefficient

of determination 𝑅2(45∘). It is computed as follows:

𝑅2(45∘) = 1−

𝑛∑
𝑖=1

(
AUChist𝑖 − AUCest𝑖

)2
𝑛∑

𝑖=1

(
AUChist𝑖 − AUChist

)2 . (14)
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As mentioned before, the proportional decomposition of credits has the charm that it

validates LGD estimations without size considerations of the EADs. This is reasonable

if the LGDs should be estimated as exactly as possible to price credits and calculate

interest rates. Imprecise estimations of LGDs can lead to wrong credit interest rates of

new contracts.

If the LGDs are used to compute losses in euros, additional validation instruments should

be implemented to guarantee that losses of large credits are estimated precisely.34 For

this purposes, a marginal decomposition of the credit should be used. This is topic of the

following subsection.

2.3 Marginal Decomposition of the Credit

In the framework of a marginal decomposition of credits, each credit is divided into single

euros.35 Here, the number of euros differs for each credit because each credit amount

varies. For each single euro 𝑖 = 1,...,EAD𝑘 of credit 𝑘 = 1,...,𝐾, now, a binary variable

d𝑒𝑖,𝑘 is defined as follows:
36

d𝑒𝑖,𝑘 =

⎧⎨
⎩1 if single euro 𝑖 of the EAD𝑘 is defaulted

0 if single euro 𝑖 of the EAD𝑘 is not defaulted.
(15)

Corresponding to the proportional decomposition, again a second binary variable nd𝑒𝑖,𝑘 ≡
1 − d𝑒𝑖,𝑘 is defined.

37 Subsequently, the sum of d𝑒𝑖,𝑘 and nd
𝑒
𝑖,𝑘 over all credits for each

single euro, denoted by D𝑒
𝑖 and ND

𝑒
𝑖 , is computed. In contrast to the proportional de-

composition, the sum of D𝑒
𝑖 and ND

𝑒
𝑖 is not equal for every single euro. For the marginal

decomposition, the same exemplary retail portfolio as for the proportional decomposition

is used in order to simplify the interpretation. The results of the marginal decomposition

for our exemplary retail portfolio are shown in Table 2.

The hit rate hr𝑒𝑖 and the false alarm rate far𝑒𝑖 are again computed according to Equation

(6). The hit rate hr𝑒𝑖 equals the fraction of the single euro 𝑖 over all defaulted euros.

The false alarm rate far𝑒𝑖 equals the fraction of the single euro 𝑖 over all euros, which are

34Clearly, for a credit with an EAD of 100 euros, a stronger deviation of the relative LGD estimation is
less problematic than for a credit with an EAD of 10,000 euros.

35It is also possible to define a different decomposition. A decomposition for example into single hundred
euros is more reasonable for large credit amounts.

36The superscript 𝑒 denotes equations and parameters for the marginal decomposition. For a decompo-
sition in single hundred euros, 𝑖 lies between one and argmax

𝑘
(EAD𝑘/100).

37For losses larger than the EAD, a modification of the variables d𝑒𝑖,𝑘 and nd𝑒𝑖,𝑘 like for the proportional
decomposition is also possible.
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Table 2: Marginal Decomposition of our Exemplary Retail Portfolio

single euro 𝑖 D𝑒
𝑖 ND𝑒

𝑖

1st 54 46
2nd 54 46
3rd 54 46
4th 54 46
5th 54 46
...

...
...

20,595th 6 58
20,596th 6 58
20,597th 6 58
20,598th 6 58
20,599th 6 58
20,600th 6 58
20,601st 6 57
20,602nd 6 57
20,603rd 6 57
20,604th 6 57
...

...
...

51,596th 0 1
51,597th 0 1
51,598th 0 1
51,599th 0 1
51,600th 0 1

not defaulted. The function of the hit rates is monotonously decreasing in 𝑖 because the

second single euro can only default if the first single euro also defaults. The function of

the false alarm rates can increase or decrease in 𝑖 because of the different amounts of

EADs of every credit. The sum of hit rate and false alarm rate is again a decreasing

function in 𝑖. The cumulated hit rate HR𝑒
𝑗 and the cumulated false alarm rate FAR𝑒

𝑗 are
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computed as follows:38

HR𝑒
𝑗 =

𝑗∑
𝑖=1

hr𝑒𝑖 FAR𝑒
𝑗 =

𝑗∑
𝑖=1

far𝑒𝑖

=

𝑗∑
𝑖=1

EAD𝑖

max∑
𝑖=1

EAD𝑖

⋅ LGD
𝑒
𝑗

LGD𝑒
=

𝑗∑
𝑖=1

EAD𝑖

max∑
𝑖=1

EAD𝑖

⋅ RR
𝑒
𝑗

RR𝑒

where where

LGD𝑒
𝑗 =

𝑗∑
𝑖=1

D𝑒
𝑖

𝑗∑
𝑖=1

EAD𝑖

RR𝑒
𝑗 =

𝑗∑
𝑖=1

ND𝑒
𝑖

𝑗∑
𝑖=1

EAD𝑖

LGD𝑒 =

max∑
𝑖=1

D𝑒
𝑖

max∑
𝑖=1

EAD𝑖

RR𝑒 =

max∑
𝑖=1

ND𝑒
𝑖

max∑
𝑖=1

EAD𝑖

. (16)

The variable max is computed as argmax
𝑘
(EAD𝑘) and equals the largest EAD amount

of all credits of the portfolio, when assuming a decomposition into single euros. Here,

LGD𝑒
𝑗 , LGD

𝑒, RR𝑒
𝑗 and RR

𝑒 are credit weighted averages. The credit weighted LGD of

our exemplary retail portfolio is 0.2.

The ROC𝑒 curve, the CAP𝑒 curve, AUC𝑒 and AR𝑒 are computed similarly to the pro-

portional decomposition. AUC𝑒 can be interpreted as the probability that the rank of a

defaulted single euro is higher than the rank of a non-defaulted single euro plus half of the

probability that a defaulted single euro ranks on the same position like a non-defaulted

single euro. The formula for AUC𝑒 reads as follows:

AUC𝑒 =
max∑
𝑖=1

(
FAR𝑒

𝑖 − FAR𝑒
𝑖−1 ⋅

HR𝑒
𝑖 +HR

𝑒
𝑖−1

2

)

=
max∑
𝑖=1

(
far𝑒𝑖 ⋅

HR𝑒
𝑖 +HR

𝑒
𝑖−1

2

)
. (17)

In probabilistic terms, AUC𝑒 reads as:

AUC𝑒 =
max∑
𝑖=1

(
Prob(RankndEur = 𝑖) ⋅ Prob(Rank

d
Eur ≤ 𝑖) + Prob(RankdEur ≤ 𝑖− 1)

2

)
= Prob(RankdEur < RankndEur) + 0.5 ⋅ Prob(RankdEur = RankndEur). (18)

38For the derivation see Appendix D.
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If all credits show the same amount of loss, AUC𝑒 assumes a value of one. If the ratio of

defaulted to non-defaulted euros is equal for every single euro 𝑖, AUC𝑒 assumes a value of

a half. In contrast to the proportional decomposition, AUC𝑒 and AR𝑒 can assume values

below 0.5.

The validation procedure is similar to the procedure for the proportional decomposition.

After computing the validation ratios for realized and estimated losses, one has to compare

them with each other. If the ratios are almost equal, again the estimation model can be

seen as a good forecast instrument for future losses.

In order to avoid mistakes in the interpretation caused by intersections of ROC curves,

again a modified AUC𝑒, denoted as MAUC𝑒, should be computed corresponding to Equa-

tion (11). For statistical validation of the results, 𝑅2(45∘)𝑒 can be computed analogously

to Equation (14).

3 Empirical Analysis

3.1 Data

For our empirical analysis, real loss data of a retail portfolio of a commercial bank are

used. The LGD estimation model is based on Workout LGDs. It consists of two parts.

At first, a logistic regression for estimating the probability of a recovery or a write-off is

carried out and subsequently, a linear regression for estimating LGDs for each case is run.

Afterwards, the sum of both LGDs weighted by the rates of a recovery and a write-off is

computed and is used as the LGD for the regarded credit.39 The retail portfolio is split

up into four subportfolios, distinct into private and commercial clients and collateralized

and uncollateralized credits at default date.

The four subportfolios are analyzed with the proportional and marginal decomposition

models of Section 2. Both in-sample and out-of-sample tests for the robustness of the

estimation model are implemented. For the in-sample test the complete modeling data

base is used for validation. Therefore, the AUCs of the realized LGDs, estimated LGDs,

realized losses and estimated losses are computed. Afterwards, the MAUC and the𝑅2(45∘)

are calculated.

For the out-of-sample test, a rejection level is computed for the MAUC at a 90 percent,

95 percent and 99 percent confidence level and for the 𝑅2(45∘) at a 10 percent, 5 percent

and 1 percent confidence level using the bootstrapping method. For bootstrapping a

39A similar model is presented by Appasamy, Dörr, Ebel & Stützle (2008). Also Peter (2006) and
Hamerle, Knapp & Wildenauer (2006) divide the LGD estimation into two parts.
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random subset of the modeling data base, reduced to each single subportfolio, is drawn

100 times. Afterwards, a validation data base is used, which was not in the modeling

set.40 The validation data time period follows the modeling data time period. Therefore,

the out-of-sample test is also an out-of-universe test. The computed MAUC and 𝑅2(45∘)

of the validation data base are compared with the confidence levels of the modeling data

base. If MAUC and/or 𝑅2(45∘) of the validation data base exceed the rejection levels,

the analyzed estimation model is not robust with respect to time or sample changes.

3.2 Results

Firstly, relative LGDs are validated using the proportional decomposition. Decompostions

into 100, 500 and 1,000 portions are chosen. Because some contracts of the subportfolios

possess LGDs larger than one, a modification according to Equation (5) is used. For each

subportfolio an EAD multiple is chosen, so that at least 95 percent of the data base do

not have to be modified.41 After computing the validation ratios for the realized and

estimated LGDs for all portfolios, MAUC and 𝑅2(45∘) are calculated for further analysis

and are shown in Table 3.

Table 3: Results for the Proportional Decomposition of the Modeling Data Base

Subportfolio Portions MAUC 𝑅2(45∘)
private clients, collateralized 100 0.2751 0.1658
private clients, uncollateralized 100 0.2900 0.5721
commercial clients, collateralized 100 0.2314 0.4879
commercial clients, uncollateralized 100 0.2325 0.7785
private clients, collateralized 500 0.2749 0.1666
private clients, uncollateralized 500 0.2898 0.5723
commercial clients, collateralized 500 0.2313 0.4883
commercial clients, uncollateralized 500 0.2331 0.7785
private clients, collateralized 1,000 0.2749 0.1668
private clients, uncollateralized 1,000 0.2898 0.5723
commercial clients, collateralized 1,000 0.2313 0.4883
commercial clients, uncollateralized 1,000 0.2331 0.7782

The LGD estimation model, which is analyzed in our paper, is mainly designed to meet

the Basel II capital requirements, therefore, we are interested in precise estimations of

absolute losses. However, for risk-adjusted credit pricing, a different approach will be

used. So, the validation for the relative LGDs is only of secondary importance in the

40The size of the random subset for bootstrapping equals the portion of the validation data base on the
modeling data base, computed for each subportfolio.

41The 95 percent level was chosen to avoid data shortening due to outliers.
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latter case. Nevertheless, three of the subportfolios possess an 𝑅2(45∘) larger than 0.48.

Only the LGD estimation of the subportfolio ”private clients, collateralized” exhibits an

inadequate accuracy.

The LGD estimation model is robust with respect to changes of the decomposition. There-

fore, for the rejection levels of MAUC and 𝑅2(45∘) a proportional decompositon of 100

for bootstrapping is used. The rejection levels for the out-of-universe test are presented

in Table 4. For MAUC, the 90 percent, 95 percent and 99 percent confidence level are

computed. However, a lower MAUC of the validation data base in contrast to the mod-

eling data base do not harm, since then, the estimation model works even better for the

validation data base than for the modeling data base. For the 𝑅2(45∘), the 10 percent, 5

percent and 1 percent confidence levels are computed. In case of a higher 𝑅2(45∘) of the

validation data base in contrast to the modeling data base, again the estimation model

works even better for the validation data base.

Table 4: Confidence Levels of MAUC and 𝑅2(45∘)
MAUC
Subportfolio 90% c.l. 95% c.l. 99% c.l.

private clients, collateralized 0.2777 0.2781 0.2793
private clients, uncollateralized 0.3005 0.3038 0.3099
commercial clients, collateralized 0.2354 0.2365 0.2403
commercial clients, uncollateralized 0.2795 0.2905 0.3112
𝑅2(45∘)
Subportfolio 10% c.l. 5% c.l. 1% c.l.

private clients, collateralized 0.1475 0.1417 0.1358
private clients, uncollateralized 0.5357 0.5255 0.4986
commercial clients, collateralized 0.4692 0.4619 0.4403
commercial clients, uncollateralized 0.6990 0.6751 0.6317

Note: The abbreviation c.l. means confidence level.

For the out-of-universe test, MAUC and 𝑅2(45∘) for the validation data base are computed

using a proportional decomposition with again 100 portions. Afterwards, these ratios are

compared with the corresponding rejection levels. Table 5 presents the results for the

validation data base. For every subportfolio, the 𝑅2(45∘) figures of the validation data

base are smaller than the confidence level. The results are similar for MAUC. Only for

the subportfolio ”commercial clients, collateralized”, the MAUC figure would lead to no

rejection. Here, it can be seen that data quality is very important. Since the validation

data time period follows the modeling data time period, an increase in data computation

and data collection quality can be assumed. Also changes in the portfolio structure or in

debtor-specific characteristics may lead to this result.
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Table 5: Results for the Proportional Decomposition of the Validation Data Base

Subportfolio MAUC 𝑅2(45∘) Rejection

private clients, collateralized 0.3160 -0.2955 yes
private clients, uncollateralized 0.5152 -1.4947 yes
commercial clients, collateralized 0.2299 0.3581 no/yes
commercial clients, uncollateralized 0.7479 -3.9974 yes

The next step is the validation of losses in euros using the marginal decomposition. There-

fore, decompositions into single 100 euros, 50 euros and 10 euros are chosen. The EAD

multiples remain the same as for the proportional decompositions. Again, AUCs of real-

ized and estimated losses are calculated at the beginning. Afterwards, the comparison of

both, realized and estimated losses, is done by using MAUC and 𝑅2(45∘). The results of

the in-sample test for the marginal decompositions are presented in Table 6.

Table 6: Results for the Marginal Decomposition of the Modeling Data Base

Subportfolio Marginal MAUC 𝑅2(45∘)
private clients, collateralized 100 0.2549 0.6677
private clients, uncollateralized 100 0.1029 0.9322
commercial clients, collateralized 100 0.2164 0.7788
commercial clients, uncollateralized 100 0.0955 0.9178
private clients, collateralized 50 0.2546 0.6689
private clients, uncollateralized 50 0.1032 0.9320
commercial clients, collateralized 50 0.2161 0.7797
commercial clients, uncollateralized 50 0.0950 0.9197
private clients, collateralized 10 0.2546 0.6691
private clients, uncollateralized 10 0.1030 0.9322
commercial clients, collateralized 10 0.2161 0.7797
commercial clients, uncollateralized 10 0.0948 0.9200

The estimations of losses in euros are more precise for every subportfolio than the esti-

mations of the relative losses. Every subportfolio possesses an 𝑅2(45∘) above 0.66, two

subportfolios even show an 𝑅2(45∘) above 90 percent. Therefore, the estimation model is

an appropriate model for estimating absolute losses, which are needed to determine the

capital requirements according to Basel II. Thus, the incentive of the bank, namely the

developement of an estimation model for absolute losses, is achieved.

The results are robust with respect to changes in the marginal size. Therefore, for com-

puting the rejection levels via bootstrapping, a marginal decomposition into single 100

euros is chosen. The rejection levels for the out-of-universe test are presented in Table 7.

To compare the modeling data base with the validation data base, firstly, a marginal de-

composition into single 100 euros of the validation data base is done. Afterwards, MAUC
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Table 7: Confidence Levels of MAUC and 𝑅2(45∘)
MAUC
Subportfolio 90% c.l. 95% c.l. 99% c.l.

private clients, collateralized 0.2588 0.2607 0.2630
private clients, uncollateralized 0.1175 0.1228 0.1262
commercial clients, collateralized 0.2240 0.2267 0.2326
commercial clients, uncollateralized 0.1483 0.1578 0.1763
𝑅2(45∘)
Subportfolio 10% c.l. 5% c.l. 1% c.l.

private clients, collateralized 0.6450 0.6399 0.6332
private clients, uncollateralized 0.9059 0.9017 0.8938
commercial clients, collateralized 0.7415 0.7373 0.7209
commercial clients, uncollateralized 0.7993 0.7704 0.6900

Note: The abbreviation c.l. means confidence level.

and 𝑅2(45∘) of the validation data base are compared with the corresponding rejection

levels. If the validation ratios exceed the rejection levels, the estimation model is not

robust with respect to changes in time or in the sample. Table 8 shows the corresponding

results.

Table 8: Results for the Marginal Decomposition of the Validation Data Base

Subportfolio MAUC 𝑅2(45∘) Rejection

private clients, collateralized 0.3048 0.5460 yes
private clients, uncollateralized 0.1110 0.9578 no
commercial clients, collateralized 0.2614 0.5281 yes
commercial clients, uncollateralized 0.2682 0.7833 yes/no

The reasons of rejections are the same as for the proportional decomposition. Again,

an increase in data quality and possible changes in the portfolio structure may lead to

differences. However, the magnitude of misspecification of absolute losses is smaller than

the misspecification of relative LGDs. Even if two subportfolios are rejected by both

measures, the 𝑅2(45∘) figures of all subportfolios are above 50 percent and for two sub-

portfolios even above 75 percent. Thus, the estimation model for absolute losses is still

applicably for forecasting future losses. Therefore, the estimation model can be imple-

mented to determine Basel II capital requirements.

4 Conclusion

The idea of this paper was to develop an LGD validation method for retail portfolios.

This topic is important because banks have to estimate LGDs on their own if they want
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to apply for the IRB approach for retail portfolios. The Basel II regulations postulate

that retail portfolios have to be homogeneous concerning at least risk drivers like borrower

and transaction risk characteristics and delinquency of exposure.42 This makes it difficult

to develop LGD rating or scoring models for retail portfolios because of their similar

characteristics.

In contrast, our suggested proportional and marginal decomposition methods are appli-

cably without LGD ratings. Furthermore, there are no specific requirements on the LGD

estimation model. Even for arithmetic mean estimations of the LGD for retail portfolios

both methods can be used. Our methods use validation instruments, that are well-known

from PD validation, where the interpretation is different. The used instruments, e.g. AUC

and AR, are accepted by supervisory authorities. Because of the different interpretation,

the ratio itself contains no information about the accuracy of the estimation model. In

fact, they describe the composition and structure of the portfolio. To validate the esti-

mation model, one has to compare the ratios calcultated on realized LGD or losses with

those calculated on estimated LGDs or losses. Therefore, AUC and AR of the historical

data base provide a benchmark for the ratios of the estimated values. If the measures are

nearly similar, the estimation model can be seen as a good forecast tool for future losses.

It also turns out, that the proportional decomposition is credit size-independent. Thus,

the method is also an instrument to proof the functionality of the estimation model over

all single credits of the portfolio. The proportional decomposition can reveal possible

weaknesses of the estimation model. Therefore, one can avoid that banks arrange their

models so that LGDs of credits with high EADs are estimated more precisely while es-

timations for credits with smaller EADs are imprecise. This fact is important if the

estimation model shall be used for credit pricing, where a precise estimation of the LGD

is important for the calculation of the contract’s interest rate.

Our paper also showed that the models work on real data and that out-of-sample and

out-of-time tests can easily be implemented.

42See Basel Committee on Banking Supervision (2004), paragraph 402.
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Appendix

A Derivation of HR and FAR

hr𝑖 =
D𝑖
𝑛∑

𝑖=1

D𝑖

=
𝐾 − ND𝑖

𝑛∑
𝑖=1

D𝑖

far𝑖 =
ND𝑖
𝑛∑

𝑖=1

ND𝑖

=
𝐾 −D𝑖
𝑛∑

𝑖=1

ND𝑖

=
𝐾

𝑛∑
𝑖=1

D𝑖

− ND𝑖
𝑛∑

𝑖=1

D𝑖

=
𝐾

𝑛∑
𝑖=1

ND𝑖

− D𝑖
𝑛∑

𝑖=1

ND𝑖

=
1

LGD ⋅ 𝑛 − ND𝑖

LGD ⋅ 𝑛 ⋅𝐾 =
1

RR ⋅ 𝑛 − D𝑖

RR ⋅ 𝑛 ⋅𝐾
HR𝑗 =

𝑗∑
𝑖=1

hr𝑖 FAR𝑗 =

𝑗∑
𝑖=1

far𝑖

=
𝑗

LGD ⋅ 𝑛 −

𝑗∑
𝑖=1

ND𝑖

LGD ⋅ 𝑛 ⋅𝐾 =
𝑗

RR ⋅ 𝑛 −

𝑗∑
𝑖=1

D𝑖

RR ⋅ 𝑛 ⋅𝐾
=

𝑗

LGD ⋅ 𝑛 − (1− LGD𝑗) ⋅ 𝑗
LGD ⋅ 𝑛 =

𝑗

RR ⋅ 𝑛 − (LGD𝑗) ⋅ 𝑗
RR ⋅ 𝑛

=
𝑗 − (1− LGD𝑗) ⋅ 𝑗

LGD ⋅ 𝑛 =
𝑗 − (1− RR𝑗) ⋅ 𝑗

RR ⋅ 𝑛
=

𝑗

𝑛
⋅ LGD𝑗

LGD
=

𝑗

𝑛
⋅ RR𝑗

RR
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B Derivation of AR

AR =

𝑛∑
𝑖=1

(
1
𝑛
⋅ HR𝑖+HR𝑖−1

2

)
− 0.5

1− 0.5− LGD
2

=

𝑛∑
𝑖=1

(
1
𝑛
⋅

𝑖⋅LGD𝑖
𝑛⋅LGD

+
(𝑖−1)⋅LGD𝑖−1

𝑛⋅LGD

2

)
− 0.5

0.5− LGD
2

=

𝑛∑

𝑖=1
(𝑖⋅LGD𝑖)−0.5⋅𝑛⋅LGD

𝑛2⋅LGD − 0.5
0.5− 0.5 ⋅ LGD

=

2 ⋅
𝑛∑

𝑖=1

(
𝑖 ⋅ LGD𝑖

)− 𝑛 ⋅ LGD− 𝑛2 ⋅ LGD
𝑛2 ⋅ LGD ⋅ (1− LGD)

=

2 ⋅
𝑛∑

𝑖=1

HR𝑖 − 1− 𝑛

𝑛 ⋅ (1− LGD)
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C Proof for the Linear Relationship between AR and AUC.

AUC = =
𝑛∑

𝑖=1

(
FAR𝑖 − FAR𝑖−1 ⋅ HR𝑖 +HR𝑖−1

2

)

=
𝑛∑

𝑖=1

(
𝑖 ⋅ RR𝑖

𝑛 ⋅ RR − (𝑖− 1) ⋅ RR𝑖−1
𝑛 ⋅ RR

)
⋅

𝑖⋅LGD𝑖

𝑛⋅LGD +
(𝑖−1)⋅LGD𝑖−1

𝑛⋅LGD
2

=

𝑛∑
𝑖=1

(
𝑖 ⋅ LGD𝑖

)− 0.5 ⋅ 𝑛 ⋅ LGD− 0.5 ⋅ 𝑛2 ⋅ LGD2

𝑛2 ⋅ RR ⋅ LGD

=

𝑛∑
𝑖=1

HR𝑖 − 0.5− 0.5 ⋅ 𝑛 ⋅ LGD
𝑛 ⋅ (1− LGD)

2 ⋅ AUC− 1 =

2 ⋅
𝑛∑

𝑖=1

HR𝑖 − 1− 𝑛 ⋅ LGD
𝑛 ⋅ (1− LGD) − 1

=

2 ⋅
𝑛∑

𝑖=1

HR𝑖 − 1− 𝑛 ⋅ LGD− 𝑛 ⋅ (1− LGD)
𝑛 ⋅ (1− LGD)

=

2 ⋅
𝑛∑

𝑖=1

HR𝑖 − 1− 𝑛

𝑛 ⋅ (1− LGD)
= AR
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D Derivation of HR𝑒 and FAR𝑒

hr𝑒𝑖 =
D𝑒

𝑖

max∑
𝑖=1

D𝑒
𝑖

far𝑒𝑖 =
ND𝑒

𝑖

max∑
𝑖=1

ND𝑒
𝑖

HR𝑒
𝑗 =

𝑗∑
𝑖=1

hr𝑒𝑖 FAR𝑒
𝑗 =

𝑗∑
𝑖=1

far𝑒𝑖

=

𝑗∑
𝑙=1

D𝑒
𝑙

max∑
𝑖=1

D𝑒
𝑖

=

𝑗∑
𝑙=1

ND𝑒
𝑙

max∑
𝑖=1

ND𝑒
𝑖

=

𝑗∑
𝑙=1

D𝑒
𝑙

max∑
𝑖=1

D𝑒
𝑖

⋅

max∑
𝑖=1

EAD𝑖

𝑗∑
𝑙=1

EAD𝑙

⋅

𝑗∑
𝑙=1

EAD𝑙

max∑
𝑖=1

EAD𝑖

=

𝑗∑
𝑙=1

ND𝑒
𝑙

max∑
𝑖=1

ND𝑒
𝑖

⋅

max∑
𝑖=1

EAD𝑖

𝑗∑
𝑙=1

EAD𝑙

⋅

𝑗∑
𝑙=1

EAD𝑙

max∑
𝑖=1

EAD𝑖

=

𝑗∑
𝑙=1

EAD𝑙

max∑
𝑖=1

EAD𝑖

⋅ LGD
𝑒
𝑗

LGD𝑒
=

𝑗∑
𝑙=1

EAD𝑙

max∑
𝑖=1

EAD𝑖

⋅ RR
𝑒
𝑗

RR𝑒
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E Data of the Exemplary Retail Portfolio

Credit EAD in e Loss in e Credit EAD in e Loss in e
1 7,100 0 51 29,900 0
2 7,400 0 52 30,900 0
3 7,500 0 53 31,300 0
4 8,300 0 54 32,200 6,500
5 8,300 0 55 32,700 0
6 8,500 0 56 33,500 11,700
7 9,000 0 57 34,000 0
8 10,100 0 58 34,800 0
9 10,500 0 59 35,400 11,500
10 10,500 0 60 36,100 10,900
11 10,500 0 61 36,700 7,300
12 10,600 4,900 62 37,400 0
13 11,000 2,600 63 38,000 13,700
14 11,400 0 64 38,600 0
15 11,900 4,400 65 39,300 0
16 12,200 2,800 66 39,800 18,600
17 12,400 0 67 40,500 1,700
18 12,500 4,000 68 41,000 0
19 12,900 0 69 41,700 16,500
20 13,400 13,400 70 42,200 10,400
21 13,800 0 71 42,800 10,800
22 13,800 13,800 72 43,200 4,000
23 14,500 0 73 43,900 0
24 14,700 3,600 74 44,300 2,200
25 14,900 0 75 44,900 10,300
26 15,000 0 76 45,300 0
27 15,600 4,300 77 45,900 7,900
28 16,000 0 78 46,200 17,600
29 16,800 0 79 46,800 0
30 16,900 8,300 80 47,100 0
31 17,000 7,700 81 47,600 0
32 18,000 5,700 82 47,900 23,400
33 18,200 0 83 48,400 11,100
34 19,200 0 84 48,600 13,500
35 19,400 0 85 49,100 17,600
36 20,500 3,500 86 49,200 0
37 20,600 0 87 49,700 7,600
38 21,800 4,700 88 49,800 22,500
39 21,800 0 89 50,200 19,100
40 23,000 2,100 90 50,300 11,500
41 23,100 0 91 50,600 16,000
42 24,300 10,300 92 50,700 25,100
43 24,400 24,400 93 51,000 5,100
44 25,600 9,100 94 51,100 20,000
45 25,700 6,400 95 51,200 18,700
46 26,900 10,900 96 51,300 0
47 27,200 0 97 51,400 0
48 28,200 8,800 98 51,400 17,900
49 28,500 7,100 99 51,500 23,200
50 29,600 0 100 51,600 23,300

Sum 3,000,000 600,000
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