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Abstract

Aim of our paper is to develop an adequate measure of predictive success and ac-

curacy of rating functions. At first, we show that the common measures of rating

accuracy, i.e. area under curve and accuracy ratio, respectively, lack of informative

value of single rating classes. Selten (1991) builds up an axiomatic framework for

measures of predictive success. Therefore, we introduce a measure for rating func-

tions that fulfills the axioms proposed by Selten (1991). Furthermore, an empirical

investigation analyzes predictive power and accuracy of Standard & Poor’s and

Moody’s ratings, and compares the rankings according to area under curve and our

measure.
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1 Introduction

A rating should provide information about default risk in terms of quantifying a prob-

ability that the debtor will not meet its payment obligations. Therefore, a single rating

class should correspond to a certain default rate, which means that a specified proportion

of the debtors within that rating class is assumed to default. In general, there are only

two states occurring in each rating class, namely default or non-default1 of a company

or a credit. An important factor for the goodness of a rating function is its discrimina-

tive power, which means a distinction between defaulted and non-defaulted companies.

Measures for this feature are adopted from signalling theory where a similar structure of

information retrieval exists so that certain signals have to be separated from noise.

One of the first who introduced such measures was Bamber (1975). He analyzed the

receiver operating characteristic (ROC) graph and the area below this graph, which is

today known as the area under curve (AUC). A linear transformation of the AUC is

called accuracy ratio (AR), which corresponds to the cumulative accuracy profile (CAP)

and was described in the context of rating functions by Keenan and Sobehart (1999). They

propose that ”one of the most useful properties of CAPs is that they reveal information

about the predictive accuracy of the model over its entire range of risk scores”. In other

words, the focus is put on the ordering of debtors according to their risk scores. This

may be satisfactory for credit risk models without using different classifications like a

Z- or Zeta-score model proposed by Altman (1968); Altman et al. (1977); Altman and

Saunders (1998). However, when using classification models like Standard & Poor’s (S&P)

and Moody’s it is not sufficient to just validate the ordering of debtors but additionally

the accuracy within each rating class. This is not ensured by the common and frequently

applied measures AUC and AR.

This shortcoming will be resolved by introducing a new measure of predictive success

based on axioms proposed by Selten (1991). He analyzed measures of predictive success

for area theories for characteristic function experiments.2 The adaption of area theoretical

1 We interpret ”default” in terms of occurrence of a credit event.
2 See Selten and Krischker (1983).
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measures for ratings is reasonable since an area theory predicts subsets within an obser-

vation space. In the rating context, the observation space is described by the number of

all rated companies and the defaulted ones are the predicted subset.

The paper is organized as follows: Section 2 introduces the common measures AUC and AR

in more detail and shows how these measures may lead to false conclusions. In Section 3 the

axiomatic approach of Selten (1991) is presented and applied to construct a new measure

for predictive success of rating functions. In Section 4 our new measure is compared to

AUC by an empirical analysis of S&P and Moody’s ratings for the period from 1982 to

2001. Section 5 concludes.

2 Common Accuracy Measures

To explain the subsequent derivation we present some general notations used throughout

the paper. Assume a rating function with k rating classes and the two observations default

(D) and non-default (ND) within each class. Furthermore, the number of debtors in each

rating class is denoted by ni, i = 1, . . . , k. Given the distribution of n companies over the

rating classes, a contingency table can be constructed as presented in Table 1.

Table 1: Exemplarily Contingency Table

The table shows the contingency table of a rating function

with k rating classes.

Rating class Observation in t = 1
in t = 0 D ND

1 A1 B1

Prediction
...

...
...

k Ak Bk

The hit rate hri for rating class i is defined as the proportion of defaulted debtors in

rating class i over all defaulted debtors. To construct the ROC the cumulated hit rate

HRs is needed, which equals the sum of all hit rates hri up to a predefined rating class
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s. According to the notation used in Table 1, hri and HRs result as:

hri =
Ai

k∑
j=1

Aj

(1)

HRs =
s∑

j=1

hrj =
s∑

j=1

Aj

k∑
l=1

Al

. (2)

Correspondingly, the false alarm rate fari for rating class i is defined as the ratio of

non-defaulted obligors in class i to the overall number of non-defaulted obligors. Formally

written, fari and the cumulated false alarm rate FARs result as:

fari =
Bi

k∑
j=1

Bj

(3)

FARs =
s∑

j=1

farj =
s∑

j=1

Bj

k∑
l=1

Bl

. (4)

The ROC curve results from plotting the cumulated hit rates on the ordinate against the

cumulated false alarm rates on the abscissa for each rating class including the points (0,0)

and (1,1). AUC is, as the name suggests, the area below this curve and can be calculated

as:

AUC =
k∑

i=1

(FARi − FARi−1) · HRi +HRi−1

2
(5)

where FAR0 = HR0 = 0 and FARk = HRk = 1.

Alternatively, AUC can also be calculated when using an integral structure:

AUC =
k∑

i=1

fari∫
0

(
hri
fari

· x+HRi−1

)
dx (6)

Engelmann et al. (2003) proved the linear relationship between AUC and AR: AR =

2 · AUC− 1. Therefore, we limit our further analysis just on the AUC.
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In the following, we show that the interpretation of AUC may be doubtful or may result

in false conclusions. To have a better insight into the arising problems, Table 1 is less

meaningful for our further analysis and will be restructured in more detail in Table 2.

Table 2: Extended Contingency Table

The table shows the extended contingency table of a rating func-

tion with k rating classes.

Rating class Observation in t = 1
in t = 0 D ND

1 D A1 B1

ND C1 D1

Prediction
...

...
...

...
k D Ak Bk

ND Ck Dk

To explain the new structure, we take a look at the rows of rating class 1. The first row

presents the number of predicted defaults within this rating class, which equal the sum

of A1 and B1. Correspondingly, the second row, indicated with ND, presents the number

of predicted non-defaults within this rating class, where the number results from the sum

of C1 and D1. When now looking at the column denoted with D, the true number of

defaulted debtors in rating class 1 results as the sum of A1 and C1. Analogously, the same

results for the non-defaulted debtors in the last column.

Since only the numbers of defaulted and non-defaulted debtors is predicted and there is

no company-specific prediction, only three cases may appear: we predict either more, less

or exactly the number of defaults. When predicting more defaults than actually occur,

the value of C1 is zero and the excess of predicted defaults will appear in cell B1. In case

of predicting less defaults than actually occur, B1 equals zero and the shortfall appears in

C1. When exactly predicting the number of actual defaults, B1 and C1 will both be zero.

A contingency table of two exemplarily rating functions with three rating classes, 30

debtors with ten defaulters is presented in Table 3. The AUC value for rating function

I is 1. This suggests that rating function I is a perfect one. Indeed, all defaulters are

in rating class 1 but every single debtor in this rating class was not recognized as a

defaulter. Furthermore, the accuracy in the other two rating classes is low and not existent,
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Table 3: Contingency Table for Two Exemplarily Rating Functions

The table shows the extended contingency table of two exemplarily rating functions with

three rating classes.

Rating Function I Rating Function II
Rating class Observation in t = 1 Observation in t = 1
in t = 0 D ND D ND

1 D 0 0 5 0
ND 10 0 0 10

Prediction 2 D 0 10 3 0
ND 0 0 0 7

3 D 0 5 2 0
ND 0 5 0 3

respectively. Rating class 3 has a merely random prediction process and the classes 1 and

2 do not show any correct prediction.

As a contrary example, we look at rating function II. Here, the rating function does

perfectly predict the number of defaulters and non-defaulters in every single rating class.

However, AUC amounts to only 0.4875, which is below the AUC value of a random rating

function (0.5). Thus according to AUC, rating function I is preferred to rating function

II. Obviously, rating function I exhibits a better ordering property of the defaulters than

rating function II since all defaulters are concentrated in rating class 1. However, the higher

(true) predictive power seems to be inherent in rating function II since the defaulters and

non-defaulters in each rating class are predicted correctly.

The general aim of a rating function is a precise estimation of the default rate for each

rating class. In case a rating function cannot fulfill this crucial requirement, a wrong

risk premium will be added to the other credit costs. AUC and AR are just measures of

successful ranking but not of successful prediction in each rating class. Therefore, we will

present a new measure of predictive success in the following section.

3 A New Measure of Predictive Success and its Ax-

iomatic Foundation

Selten and Krischker (1983) were one of the first to analyze measures of predictive success
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with respect to their general structure. They analyzed these measures in the context of

experiments and their results. In general, such measures contain two parts. One part refers

to the accuracy of the prediction, i.e. the relative frequency of correct predictions which

is also called hit rate.3 The second part refers to the precision of a prediction, i.e. the

relative size of the predicted outcome to all outcomes. Selten (1991) refers to this part

as the area of a theory. According to their properties, Selten (1991) analyzed different

measures. These measures are either a difference measures, i.e. the difference between hit

rate and corresponding area, or a ratio measure, i.e. the ratio of hit rate and area.

Selten (1991) argued with the help of a small numerical example that a difference measure

is more favorable than a ratio measure. He considered two theories, the first exhibits a

hit rate of 0.9 and an area of 0.1 and the second exhibits a hit rate of 0.01 and an area of

0.0001. A ratio measure would prefer the second theory since its value of 100 is greater

than 9, which is the ratio of the first theory. However, this implication may not be true

since a hit rate of 0.01 means that in 99 of 100 cases the prediction of this theory is wrong.

In contrast to this, the first theory predicts 90 of 100 cases correctly and uses ten percent

of the set of all outcomes. It is obvious that the trade-off between hit rate and predicted

area may have unfavorable impacts on the decision between two theories. Transferred to

the framework of rating functions, this means that it almost does not matter how good

the prediction is if the area of a rating function is sufficiently small, so that the rating

function outperforms other rating functions.

Reconsidering the structure of Equation (6), AUC is similar to a ratio measure. The nu-

merator contains the hit rate, but with respect to the ordering of defaults and not as the

relative size of the predicted outcome to all outcomes. Thus, once more the predictive

power of a rating function cannot be addressed with the AUC measure. The denominator

consists of fari, which is kind of an area measure in a more abstract way.4 If we con-

sider the whole set of rated companies, a rating function partitions this set into subsets

represented by rating classes. Each class can be partitioned into two subsets: defaulters

3 This hit rate needs not be identical to the hit rate of the AUC framework.
4 It may happen that fari = 0 but this shall not influence the mentioned shortcomings of AUC.
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and non-defaulters. The false alarm rate describes the relative size of wrongly assessed

companies in that rating class given that hri is not zero. Again, just the ordering property

is addressed. Taking a look again at rating class 1 of rating function I in Table 3, it is

apparent that a small area, i.e. a false alarm rate near or equal to zero, leads to a high

AUC value, independent of how accurate the prediction was.

Inspired by these considerations, we introduce a difference measure to overcome the draw-

backs of AUC. Since hit rate and area are the two driving factors, we start looking at the

hit rate. To determine the predictive power of a rating function, it is not only important

to look at the predictive power with respect to the defaulters but also with respect to

non-defaulters. Both numbers are related to each other in every rating class since the total

number per class is partitioned into defaulters and non-defaulters. We define the hit rate

as the relative deviation of the predicted number to the actual number of either defaulted

or non-defaulted debtors within each rating class and denote the hit rate as r{.}, where

the subscript D denotes default and ND denotes non-default. The following equations for

hit rates refer to rating class i in Table 2:

rD,i =

⎧⎪⎪⎨
⎪⎪⎩
0 , Ai = Bi = Ci = 0

1− |(Ai+Bi)−(Ai+Ci)|
max{(Ai+Bi),(Ai+Ci)} , otherwise.

(7)

This can be rearranged to:

rD,i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 , Ai = Bi = Ci = 0

1− Ci

Ai+Ci
, Bi = 0 ∧ Ai �= 0 �= Ci

1− Bi

Ai+Bi
, Ci = 0 ∧ Ai �= 0 �= Bi.

(8)

Analogously, the non-default hit rate reads as:

rND,i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 , Bi = Ci = Di = 0

1− Ci

Ci+Di
, Bi = 0 ∧Di �= 0 �= Ci

1− Bi

Bi+Di
, Ci = 0 ∧Di �= 0 �= Bi.

(9)
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The following interpretation of the hit rate is restricted to the default case as the non-

default case can be interpreted analogously. Consider the first situation where the hit rate

equals zero. In this case there are no defaulters in this class and no default was predicted.

This implies that the corresponding hit rate for the non-defaulters in this rating class

equals one. In the other situation we subtract the relative prediction error from one to get

the hit rate. By this definition we assure that deviations in both directions, i.e. predicting

more than or less than the actual number, are equally evaluated. Consider for example

a rating class with ten defaulters but only one default was predicted. Then the relative

deviation equals 0.9 and, thus, the hit rate amounts to 0.1. Consider another case with one

defaulter but ten predicted defaults. Here, again the relative deviation equals 0.9 and so

again the hit rate equals 0.1. In both situations the distance between predicted and actual

defaults is the same, resulting in the same hit rate value. Thus, neither a too optimistic

nor a too pessimistic prediction is advantageous.

The second driving factor of our new measure is the area. As mentioned before, the area

denotes the relative size of the outcome to all outcomes in this class. For example in the

default case, the area is defined as the ratio of defaulters in this class to the number of

all obligors within that class. Thus, the areas a{.,i} for the default and non-default case in

rating class i read as:

aD,i =
Ai + Ci

Ai +Bi + Ci +Di

and aND,i =
Bi +Di

Ai +Bi + Ci +Di

(10)

Eventually, the measures of predictive success for defaults and non-defaults result as the

difference between hit rate and corresponding area for each rating class: mD,i = rD,i−aD,i

for the default case of rating class i (the non-default case results analogously: mND,i =

rND,i − aND,i). There are 2 · k measures for each rating function, which is inconvenient

for comparisons of rating functions. Thus, an aggregate measure may serve better for this

purpose. We suggest to create a weighted sum of the two measures mD,. and mND,. over

all rating classes by weighting mD,i with hri and mND,i with fari. This is meaningful

since the importance of each measure can be described by the proportion of the specific
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outcome in a rating class to the total number of that outcome over all rating classes.

Therefore, the final measure for a rating function can be described by:

m =
k∑

i=1

(hri ·mD,i + fari ·mND,i) . (11)

We apply this new measure to the rating functions presented in Table 3. The corresponding

values for rating function I and II are mI = −1.75 and mII = 0.995 so that rating function

II is better than rating function I, which was suggested by the numbers in the table.

However, the resulting figures are not always directly comparable unless they have a

different sign. The problem is due to different numbers of debtors that defaulted or non-

defaulted in each rating class. Thus, the minimal and maximal values that the measure

can take depends on the rating class and are different for each rating function. Even

for one rating function these values may change over time. Therefore, it is necessary to

create a standardized measure for each rating function and each time period considered.

To derive the maximum value of a rating function we look at the general structure for a

perfect prediction. A perfect prediction is characterized by a hit rate of one for both the

number of defaults and the number of non-defaults in each rating class. This determines

the area in each rating class since there is no wrong prediction and, therefore, according

to the notation used before, Bi and Ci are zero. Hence, the maximum value mmax can be

calculated as:

mmax =
k∑

i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ai

k∑
j=1

Aj︸ ︷︷ ︸
=hri

·

⎛
⎜⎜⎜⎝ 1︸︷︷︸

=rD,i

− Ai

Ai +Di︸ ︷︷ ︸
=aD,i

⎞
⎟⎟⎟⎠+

Di

k∑
j=1

Dj︸ ︷︷ ︸
=fari

·

⎛
⎜⎜⎜⎝ 1︸︷︷︸

=rND,i

− Di

Ai +Di︸ ︷︷ ︸
=aND,i

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1
k∑

j=1

Aj

+
1

k∑
j=1

Dj

⎞
⎟⎟⎟⎠ ·

k∑
i=1

Ai ·Di

Ai +Di

(12)

For instance, the maximum value for rating function II in Table 3 equals 0.995.
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Rating function I exhibits a negative measure value and the question arises how bad is the

rating function compared to the lowest possible m given the observations. The number

of defaults and non-defaults within each rating class are observed values and the area is

fixed. The worst prediction, and thus the lowest m, will be reached when predicting either

only defaults or only non-defaults, depending on the specific values of hri and fari. When

predicting just one outcome, for instance just defaults D, the measure of this outcome will

become zero and the corresponding measure for non-defaults will be −aND,i. Therefore,

the minimum of hri ·(−aD,i) and fari ·(−aND,i) for each rating class i has to be considered

and aggregated over all rating classes. The minimum value mmin can be calculated as:

mmin =
k∑

i=1

min {hri ·mD,i, fari ·mND,i}

=
k∑

i=1

min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− (Ai + Ci)

2

ni ·
k∑

j=1

(Aj + Cj)

,− (Bi +Di)
2

ni ·
k∑

j=1

(Bj +Dj)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (13)

where ni denotes the number of debtors in rating class i. Thus, the minimum value for

rating function I in Table 3 equals−2 and it is evident by Equation (13) that this minimum

value is always negative.

Now, we derive a standardized measure M for comparing different rating functions. The

relative quality of a rating function is described by its distance to its minimum and

maximum value. Therefore, a standardized measure that only takes values from the unit

interval can be computed as:

M =
m−mmin

mmax −mmin

(14)

The corresponding values of rating functions I and II are M I = 0.125 and M II = 1,

respectively, indicating that rating function II shows perfect predictive power.

Finally in this section, we check the axioms proposed by Selten (1991) that present de-

sirable properties of measures of predicted success. These axioms are based on measures

that are functions of hit rate-area combinations (r, a) ∈ [0, 1]× [0, 1], which is fulfilled for

our definitions. The first two of Selten’s axioms are propositions on monotonicity with
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respect to hit rate and area, respectively:

∀a ∈ [0, 1], 0 ≤ r2 < r1 ≤ 1 : m(r1, a) > m(r2, a) (15)

and

∀r ∈ [0, 1], 0 ≤ a1 < a2 ≤ 1 : m(r, a1) > m(r, a2). (16)

The third of Selten’s axioms states that the resulting measure should be continuous ev-

erywhere on the unit square. The fourth axiom states that there exists some function that

allows for a cost-benefit evaluation. This means that one can decide whether a theory is

better than another one by just comparing the differences in hit rates and areas. The fifth

axiom refers to the equivalence of trivial theories, namely m(0, 0) = m(1, 1). Finally, the

sixth axiom refers to linearity of the measure:

∀α ∈ [0, 1] : m (αr1 + (1− α)r2, αa1 + (1− α)a2) = αm(r1, a1) + (1− α)m(r2, a2) (17)

Since our measure is a difference measure for each rating class (with a cardinal charac-

terization), Theorem 2 in Selten (1991) shows that the axioms 1, 2, 5 and 6 are fulfilled.

Axiom 3 is obviously fulfilled using the so called ε−δ definition of continuity and choosing

δ = ε, whereas axiom 4 is fulfilled by defining the canonical cost-benefit function

Δ(r1 − r2, a1 − a2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 , r1 − r2 > a1 − a2

0 , r1 − r2 = a1 − a2

−1 , r1 − r2 < a1 − a2.

Our standardized measure M results as a linear transformation of the specific measuremi,

whereas hri, fari, mmax and mmin are independent of the predictive power of the rating

function under consideration and, thus, act as constants. Therefore, all desired properties

of a measure of predictive success are fulfilled our standardized measure M .
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4 Empirical Analysis

In this section, we analyze the predictive power of the rating functions of Standard &

Poor’s and Moody’s for the time period from 1982 to 2001 using contingency tables and

seven rating classes for each company. The data set for S&P is obtained from Standard

& Poor’s (2002) comprising the rating classes AAA, AA, A, BBB, BB, B and CCC. The

corresponding data for Moody’s is obtained from Moody’s Investors Service (2002) for

rating classes Aaa, Aa, A, Baa, Ba, B and Caa.

Two approaches are taken to compute the predicted default probability. The first approach

uses a five-year moving average of the default rates of the preceding years as a proxy for

the predicted default probability in the current year. Therefore, the first M value can be

computed for the year 1987. The second, more intuitive, approach uses idealized default

probabilities for each rating class as a proxy for the predicted default probability. Idealized

default probabilities are computed in various ways often using Monte Carlo techniques,

long-term historical data and agency-specific assessments for future developments regard-

ing the specified rating class. We use rating agency-specific idealized one year default

probabilities published by Johnston (2009) for the S&P data and obtained from Moody’s

Investors Service (2006) for the data of Moody’s. These idealized default probabilities are

fixed for each rating class and each year. This is reasonable because rating classes should

be fixed over time so that a yearly comparison of different ratings is possible. When us-

ing these idealized default probabilities, the whole time period can be used to measure

predictive power.

We start with a presentation of the corresponding AUC values for the two rating functions.

These values present just the ranking ability of the rating classes as described in Section

2. Figure 1 presents AUC values for the rating functions of S&P and Moody’s for the

time period from 1982 to 2001. The AUC values in each year are indicated with a black

triangle for S&P and with a grey square for Moody’s. Single values are connected with

grey and black lines to indicate the development over time. All AUC values are above

80% for both rating functions and all considered points in time, indicating a high ranking
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Figure 1: AUC values for S&P and Moody’s
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power for both agencies. Furthermore, Moody’s rating accuracy seems to be more volatile

over time and indicates a better ranking ability than S&P when looking at the descriptive

statistics below. The average AUC values are 91.03% and 91.04% with corresponding

standard deviations of 2.23% and 3.14% for S&P and Moody’s, respectively. The maxima

of the fluctuation intervals appear small with a span of about 10.7 percentage points for

S&P and about 11.8 percentage points for Moody’s.

When calculating the corresponding M values using the five-years moving average of the

default rates as an estimator for the predicted default probability, a different picture re-

sults. In Figure 2 both the AUC values and the M values of S&P’s and Moody’s rating

functions are presented for the time period from 1987 to 2001. Note that the predicted

default probabilities may yield predicted numbers of default and non-default that are not

integer. However, we used the exact values and did not round when calculating the cor-

responding hit rates according to Equations (8) and (9). Triangles and squares connected

with dotted lines in Figure 2 are AUC values for S&P and Moody’s, whereas circles and

diamonds connected with solid lines represent M values for Moody’s and S&P, respec-
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Figure 2: AUC and M values for S&P and Moody’s using a five-years moving average
of default rates

60%

65%

70%

75%

80%

85%

90%

95%

100%

1987 1989 1991 1993 1995 1997 1999 2001
Year

A
U

C
 a

nd
 M

 v
al

ue

S&P AUC Moody's AUC S&P M Moody's M

tively, for each year starting in 1987. M values fluctuate more over time than AUC values.

When looking at the descriptive statistics average M values are 78.39% and 79.81% for

S&P and Moody’s, respectively, indicating lesser predictive power than AUC values do.

Standard deviation rises to 7.95% and 8.47% for S&P and Moody’s, respectively. Thus,

predictive power is more volatile than suggested by AUC. Maxima of fluctuation intervals

are larger with a span of 29.3 percentage points for Moody’s and 29.7 percentage points

for S&P, so the span almost tripled. Another interesting result is the different ranking

between the two rating agencies, which is often inverted in comparison to the ranking

suggested by AUC values. In ten out of 15 years the ranking of the agencies is different

for the M measure compared with the AUC-based ranking.

Maybe more important, we will now evaluate the performance of the rating functions when

using the idealized default probabilities (IPD). The results will yield high validity since

the predictive power is directly referred to the prediction of number of defaults in each

rating class stated by the rating agency. The idealized default probabilities for the rating

classes of our data set are presented in Table 4. The IPDs of S&P are smaller than the
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Table 4: Idealized One-Year Default Probabilities for S&P and Moody’s

The table shows the idealized one-year default probabilities for the rating agencies

S&P and Moody’s and the seven rating classes described in the text in percent.

Rating classes of S&P IPD Rating classes of Moody’s IPD
AAA 0.0002 Aaa 0.0001
AA 0.0075 Aa 0.0014
A 0.0217 A 0.0109

BBB 0.2943 Baa 0.1700
BB 2.2956 Ba 1.5600
B 5.2946 B 7.1600

CCC 45.5600 Caa 26.0000

ones of Moody’s for each rating class except for rating class B. Figure 3 presents the AUC

and M values of S&P’s and Moody’s rating functions for the total time period from 1982

to 2001 using IPDs as predictors. Again, triangles and squares connected by dotted lines

Figure 3: AUC and M values of S&P and Moody’s using IPDs
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present the AUC values for S&P and Moody’s, respectively, whereas circles and diamonds

connected by solid lines represent the M values for Moody’s and S&P, respectively, for

each year. There is still a high fluctuation of M values in comparison to AUC values but

the results improve somehow - compared to the case when five-years moving averages of
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default rates are used - since the averages increase to 79.01% and 81.72% whereas the

standard deviations decrease to 6.57% and 7.93% for S&P and Moody’s, respectively. As

expected, the maxima of the fluctuation intervals decreases to 24.3 and 24.2 percentage

points for S&P and Moody’s, respectively, but they are still more than twice as high as

the range of the AUC values. Furthermore, the ranking of the two agencies according

to M values differs from the ranking according to AUC values. In addition, the relative

distance of predictive power between both companies is occasionally larger than implied

by the AUC ranking (e.g. in 1993). Overall, the ranking according to the M measure

differs in 13 out of 20 years from the AUC-based ranking.

5 Conclusion

The idea of our paper was to develop an adequate validation method for rating functions

using the axiomatic approach proposed by Selten (1991). It was exemplarily shown that

the common and frequently applied measures AUC and AR fail to measure predictive

power within rating classes since they are just ranking measures. To overcome this short-

coming we introduced a new standardized measure that explicitly focuses on predictive

success and neglects ranking ability of rating functions. Rating should be an indicator of

the default risk a company or credit is exposed to. Our measure takes both defaults and

non-defaults into consideration since these realizations are in a dual structure so that the

prediction of one dimension has a direct influence on the predictive success of the other

dimension.

The axiomatic framework settled for our derivation was introduced by Selten (1991) in a

general manner. We adapted his ideas to rating functions and examined the performance

of ratings by S&P and Moody’s for the period from 1982 to 2001. Observed AUC values

are high (> 90%) and nearly stable over the whole period, indicating a good ranking

ability. In contrast, our measure indicates a volatile accuracy regarding the predictive

power of both rating functions and both prediction approaches using a moving average

and idealized default probabilities. The main result obtained is a difference in the ranking
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between both agencies over time. Here, AUC and our standardized measure often imply

contrary results regarding which of the rating functions is more favorable.
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