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Abstract

Aim of our paper is to analyze the enhancement of portfolio management by us-

ing more sophisticated assumptions about distributions and dependencies of stock

returns. We assume a skewed t-distribution of the returns according to Azzalini

and Capitanio (2003) and a dependency structure following a Clayton copula. The

risk measure applied to our portfolio selection changed from traditional portfolio

variance to downside-oriented conditional value-at-risk. The empirical results show

a superior performance of our approach compared to the Markowitz approach and

to the approach proposed by Hatherley and Alcock (2007) on a risk-adjusted basis.

The approach is applied on daily stock returns of 16 stocks of the EURO STOXX

50.
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1 Introduction and Related Literature

The general idea of portfolio selection is based on the framework introduced by Markowitz

(1952). This framework is known as mean-variance portfolio theory (MVPT) since risk

is measured by the variances of the rates of return. In case that no assumptions on the

investor’s utility functions are made,1 MVPT requires that rates of return are multivari-

ate normally distributed.2 Then, marginal distributions have to be univariate normally

distributed and the dependency structure has to be constant for all observations and all

marginal distributions for each point in time. Several empirical studies have shown that

these assumptions are frequently violated.

Regarding normality of marginal distributions, Mandelbrot (1963) was one of the first who

analyzed the distribution of price changes. He found that wool price changes were non-

normally distributed but rather follow a stable Paretian distribution. He used monthly

changes in wool prices over the time period from 1890 to 1937. Fama (1965) adopted the

idea of Mandelbrot (1963) and showed that the return distributions of stock price changes

are more peaked and have fatter tails than the normal distribution predicts. His data set

contained daily prices of 30 stocks of the Dow Jones Industrial Average over the time

period from 1957 to 1962.

Westerfield (1977) analyzed dividend-adjusted daily prices of 315 common stocks traded

on the New York Stock Exchange over the time horizon from 1968 to 1969 and con-

cluded that stock price returns were not driven by a stable symmetric distribution which

implies that they were not normally distributed. Also Hagerman (1978) rejected the hy-

pothesis of normally distributed stock returns and he suggested to use a mixture of a

normal distribution and a t-distribution. This analysis was performed on a data set com-

prising 1,091 stocks traded on the New York Stock Exchange and the American Stock

Exchange. A statistical test for stock returns to identify multivariate normality was in-

troduced by Richardson and Smith (1993). They analyzed 30 stocks of the Dow Jones

Industrial Average over the period from 1951 to 1968. They could reject both normality

of the marginal distributions and normality of the joint distribution. A comprehensive

analysis of different return distributions was carried out by Peiró (1994) who tested six

equity markets for return distributions following a normal, logistic, power, Student’s t or

two mixture distributions. As a result, the normal distribution was always excluded and

the Student’s t-distribution fitted best. Boothe and Glassman (1987), Young and Graff

1 Of course, risk aversion is required but we make no assumptions on the degree of risk aversion.
2 Chamberlain (1983) showed that the so-called elliptical symmetric distributions imply a mean-
variance criterium and that these distributions belong to the location-scale class. Meyer (1987) proved
that the location and scale parameters can be expressed by mean and standard deviation if these
variables exist.
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(1995) and Bekaert et al. (1998) provide evidence of non-normally distributed returns for

other asset classes, e.g. exchange rates, real estates or emerging markets.

The second crucial assumption concerning the constant dependency structure was re-

viewed and rejected by several empirical studies. Patton (2004) analyzed a portfolio con-

sisting of two funds, namely a portfolio of small market capitalized stocks and a portfolio

of large market capitalized stocks, respectively, and the risk-free asset. He assumed an

investor exhibiting constant relative risk aversion. By applying different dependence mea-

sures using various copula types and assuming different degrees of relative risk aversion

he could not find a clear preference of a certain model having short-sale constraints. Even

without any constraints the preferred model heavily depended on the degree of relative

risk aversion. Sun et al. (2008) compared simulated co-movements of six German equity

indices, using different marginal distributions and different copulas, with the realized re-

turns in the time period from January to September 2006 using high-frequency stock

prices. As a result, the skewed Students t-copula was found to fit best to the data.

A similar approach analyzing monthly index return movements was carried out by Oki-

moto (2008). He mainly used US and UK stock index data over the time period of 1973 to

2003 where he combined a Markov switching model with copula theory. He found two types

of asymmetric dependencies, namely an asymmetric dependence between bear markets

and normal markets and an asymmetric lower tail dependence in bear markets. Hatherley

and Alcock (2007) analyzed the effects of incorporating asymmetric dependence on port-

folio optimization. Therefore, they constructed a portfolio consisting of three Australian

branch indices assuming a Clayton copula and normal marginal distributions. They opti-

mized the portfolio weights by using a downside-oriented risk measure and compared the

performance to a Markowitz-optimized portfolio. By incorporating lower tail dependence

the downside-oriented copula approach outperformed on both absolute and risk-adjusted

return measures.

For a general overview of different goodness-of-fit tests for copulas we recommend Genest

et al. (2009). To analyze asymmetric dependencies, Hong et al. (2007) developed a model-

free test for asymmetric correlations. Since their test statistic only checks for the existence

of asymmetric dependence but not for the direction, Alcock and Hatherley (2009) extended

the test by incorporating also the direction of asymmetric dependence.

Due to the empirical findings, it seems obvious to include both asymmetries, asymmet-

ric marginal distributions and an asymmetric dependency structure between the marginal

distributions. We extend the approach presented in Hatherley and Alcock (2007) by fitting

skewed t-distributions to the return distributions of single stocks instead of fitting normal

distributions to index returns as in Hatherley and Alcock (2007). The reason for using

normal marginal distributions was that they wanted to analyze the influence of asymmet-

ric dependency on performance. Therefore, they compared their results to a Markowitz
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approach which also assumes normal marginal distributions. Since we want to examine

both kinds of asymmetries, the assumption of skewed t-distributed marginal distributions

seems more reasonable. Additionally, we choose stocks instead of indices to account for

the higher diversification potential. Another crucial point in our methodology is the use

of a time-varying copula instead of a fixed copula parameter proposed by Hatherley and

Alcock (2007). For the portfolio construction we use a conditional value-at-risk (CVaR)

approach according to Rockafellar and Uryasev (2000).

The remaining paper is organized as follows: Section 2 describes the skewed t-distribution,

the copula approach, the optimization methodology, and the benchmark approaches. Sub-

sequently, the data set is introduced in Section 3. The results of the portfolio optimizations

are presented in Section 4. Section 5 concludes.

2 Basics and Methodology

The general optimization procedure is represented by the following steps:

• Step 1: Estimation of the distribution parameters of the marginal distributions,

• Step 2: Estimation of the copula parameters,

• Step 3: Simulation of a large realization sample obtained from the estimated copula,

• Step 4: Construction of the efficient frontier in terms of expected rate of return and

CVaR,

• Step 5: Selection of the optimal portfolio for a given CVaR.

These steps are described in more detail below.

2.1 Skewed t-distributions

The first step of our optimization procedure involves the estimation of the marginal dis-

tributions of the stock returns. As mentioned in Section 1, we decide to use a skewed

t-distribution. In general, there are several ways to construct skewed t-distributions. We

want to present a short overview of different methodologies to incorporate the skewness

within the t-distribution. One of the first to introduce a skewed t-distribution was Hansen

(1994). His suggestion is described by the following density function:

fHansen(x) =
2βΓ
(
ν+1
2

)
(β2 + 1) Γ

(
ν
2

)√
π
√
νδ

[
1 +

(
x−μ
δ

)2
ν

(
1

β2
�(x≥μ) + β2

�(x<μ)

)]− ν+1
2

, (1)

3



where β > 0 is a kind of skewness parameter, Γ(·) denotes the Gamma function, ν denotes

the degrees of freedom (df), δ is a scale parameter, μ is the mean of the non-central t-

distribution and �(·) denotes the indicator function. In the case β = 1, fHansen(x) becomes

the density function of the non-central t-distribution with mean μ and variance δ2 ν
ν−2

.

An alternative skewed t-distribution, called epsilon-skew-t (EST) distribution was pro-

posed by Gómez et al. (2007) following Arellano-Valle et al. (2005), where the density

function is defined as:

fEST(x) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
π
√
νδ

[
1 +

(
x−μ
δ

)2
ν

(
1

(1− ε)2
�(x≥μ) +

1

(1 + ε)2
�(x<μ)

)]− ν+1
2

. (2)

If ε = 0 the density function reduces to that of a non-central t-distribution with mean μ

and variance δ2 ν
ν−2

.

The skewed t-distribution introduced by Jones and Faddy (2003) shows the density func-

tion:

fJones(x) =
Γ (ν + β) 21−ν−β

Γ
(
ν
2

)
Γ
(
ν
2
+ β
)√

ν + βδ

⎛⎝1 + (
x−μ
δ

)√
ν + β +

(
x−μ
δ

)2
⎞⎠ ν+1

2

⎛⎝1− (
x−μ
δ

)√
ν + β +

(
x−μ
δ

)2
⎞⎠

ν+2β+1
2

, (3)

where ν > 0 and β > −ν/2. If β = 0, fJones(x) reduces to the density function of the

non-central t-distribution with mean μ and variance δ2 ν
ν−2

.

Another way to obtain a skewed t-distribution is the generalized hyperbolic skewed t-

distribution proposed by Aas and Haff (2006) where the density function is defined as

follows:

fAas/Haff(x) =
2

1−ν
2 δν |β| ν+1

2 K ν+1
2

(√
β2 (δ2 + (x− μ)2)

)
exp(β(x− μ))

Γ
(
ν
2

)√
π
(√

δ2 + (x− μ)2
) ν+1

2

, β �= 0

and

fAas/Haff(x) =
Γ
(
ν+1
2

)
√
πδΓ
(
ν
2

) [1 + (x− μ)2

δ2

]− ν+1
2

, β = 0, (4)

whereKj(·) denotes the modified Bessel function of the third kind of order j. In the case of

β = 0, fAas/Haff(x) again reduces to the density function of the non-central t-distribution

with mean μ and variance δ2

ν−2
.

Arslan and Genç (2009) and Theodossiou (1998) present a generalized skewed t (SGT) dis-
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tribution which covers several well-known distributions, e.g. Hansen’s skewed t-distribution,

the generalized t-distribution, and the Gaussian distribution. The density function accord-

ing to Arslan and Genç (2009) reads as:

fSGT(x) =
p

2B (1/p, q) q1/pσ

[
1 +

|x− μ|p
(1 + sign(x− μ)λ)p qσp

]− pq+1
p

, (5)

where B(·) denotes the beta function, μ is a location parameter, σ > 0 is a scale parameter,

−1 < λ < 1 is the skewness parameter, and p, q > 0 are the shape parameters. This density

function can be transformed to the form given by Theodossiou (1998). If λ = 0 and p = 2,

once again the density function becomes that of the non-central t-distribution with mean

μ, degrees of freedom 2q, and variance νσ2

2ν−4
.

The skewed t-distribution applied in our paper corresponds to Azzalini and Capitanio

(2003) where the density function is given by:

fA/C(x) =
2Γ
(
ν+1
2

)
√
π
√
νδΓ
(
ν
2

) [1 + (x− μ)2

δ2ν

]− ν+1
2

Tν+1

(
β
x− μ

δ

√
ν + 1(

x−μ
δ

)2
+ ν

)
, (6)

where Tn(·) denotes the distribution function of the univariate t-distribution with n de-

grees of freedom. In the case β = 0, also fA/C(x) reduces to the density function of the

non-central t-distribution with mean μ and variance δ2 ν
ν−2

.

For obtaining the distribution parameters the maximum likelihood approach is applied.3.

The log-likelihood function of Equation (6) for n observations equals:

l(β, δ, μ, ν) =
n∑

i=1

(
log(2)− log(δ) + log

{
gν

((
xi − μ

δ

)2
)}

+ log

{
Tν+1

(
β
xi − μ

δ

√
ν + 1(

xi−μ
δ

)2
+ ν

)})
, (7)

where gn denotes the standard t-distribution with n degrees of freedom. The maximum

is obtained via numerical optimization.4

2.2 Asymmetric Dependencies via Copulas

MVPT requires that the dependency structure between all assets is symmetric and linear.

Under these assumptions empirical observations like tail dependencies and non-linear

dependencies are not covered. To overcome these drawbacks economists often tend to

3 For a theoretical background see Azzalini and Capitanio (2003)
4 We use the R-package sn developed by Azzalini. We chose the skewed t-distribution according to
Azzalini and Capitanio (2003) since for our data set the sn-package performs best.
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use copulas to model the dependency structure between risky assets. The idea of copulas

was introduced by Sklar (1959) who tried to find a function that combines univariate

distributions to a multivariate distribution. In general, a copula is a joint distribution

function with uniform marginal distributions. Thus, the joint distribution function of two

random variables X and Y can be obtained by:

F (x, y) = C (F1(x), F2(y)) , (8)

where F denotes the distribution function and C denotes the copula. The general require-

ments for a function to be a copula function are as follows:

Definition 1. A function C : [0, 1]n → [0, 1] is a n-copula if it possesses the following

properties:

• ∀ u ∈ [0, 1] : C(1, . . . , 1, u, 1, . . . , 1) = u,

• ∀ ui ∈ [0, 1] : C(u1, . . . , un) = 0 if ∃ j ∈ {1, . . . , n} : uj = 0,

• C is grounded and n-increasing.

There are three main categories of copulas which differ in the generation of the copula

function. Elliptical copulas are copula functions derived from elliptical distribution func-

tions like the Gaussian or the Student’s t-distribution. Archimedean copula functions are

constructed via generator functions. The third copula class is called extreme value copulas

which are derived from multivariate extreme value distributions.5

Since asset returns frequently exhibit lower tail dependence as pointed out by Hart-

mann et al. (2004), Rodriguez (2007), Fortin and Kuzmics (2002) and Longin and Solnik

(2001), we decide to model this dependency via a Clayton copula which belongs to the

Archimedean copula class. Lower tail dependence in the two-dimensional case can be

thought of high positive correlation between two random variables whenever small real-

izations are obtained. For instance, when analyzing rates of return, lower tail dependence

refers to high positive correlation between extreme negative returns.

In general, Archimedean copulas are constructed by a generator function γ which is a

strictly decreasing continuous function with the unit interval as its domain, range [0,∞]

and γ(1) = 0. The resulting n-dimensional copula Cn(u1, . . . , un) reads as:

Cn(u1, . . . , un) = γ[−1] (γ(u1) + . . .+ γ(un)) , (9)

where γ[−1](·) denotes the pseudo-inverse and ui = Fi(x) with Fi(x) being the ith marginal

5 For a general overview of copula concepts and different copula classes see Cherubini et al. (2004),
Nelsen (2006), and Malervergne and Sornette (2006).
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distribution function. The pseudo-inverse γ[−1](x) is defined as:

γ[−1](x) =

⎧⎨⎩γ−1(x), 0 ≤ x ≤ γ(0)

0, x ≥ γ(0)
. (10)

The generator function for the Clayton copula reads as:

γ(u) =
1

λ

(
u−λ − 1

)
. (11)

So, the n-dimensional Clayton copula results:

C(u1, . . . , un) =

(
n∑

i=1

u−λ
i − (n− 1)

)− 1
λ

. (12)

Estimation of the copula parameter λ is done via a two-step maximum likelihood ap-

proach. The log-likelihood function of a n-dimensional copula with T observations is

defined as:

l(θ1, . . . , θn;λ) =
T∑
t=1

log f [x(t); θ1, . . . , θn;λ]

=
T∑
t=1

log c [F1(x(t); θ1), . . . , Fn(x(t); θn);λ]

+
T∑
t=1

log f1(x(t); θ1)

...

+
T∑
t=1

log fn(x(t); θn), (13)

where f denotes the density of the joint distribution, fi denotes the density of the ith

marginal distribution, θi denotes the vector of distribution parameters of the ith marginal

distribution, and c denotes the density of the copula itself. The first step of the maximum

likelihood approach involves the estimation of each vector θi of the nmarginal distributions

by maximizing
T∑
t=1

log fi(x(t); θi) with respect to θi. When using skewed t-distributions for

the marginal distributions as in our case, maximization can be done according to our

procedure from the end of Section 2.1.

The second step within the maximum likelihood approach involves the maximization

of Equation (13) with respect to λ using the estimators of the marginal distribution

parameters obtained in the first step. Since λ does only occur in the first summand of
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Equation (13), maximization of the log-likelihood simplifies to:

l(λ) =
T∑
t=1

log c
[
F̂1(x(t); θ̂1), . . . , F̂n(x(t); θ̂n);λ

]
. (14)

Applying the second step to our n-dimensional Clayton copula, the density function of

the copula reads as:

c(û1, . . . , ûn);λ) =
∂nC

∂û1 . . . ∂ûn

=
n−1∏
i=1

(1 + iλ)

(
n∏

j=1

ûj

)−λ−1( n∑
k=1

ûk
−λ − n+ 1

)− 1
λ
−n

, (15)

where ûi = F̂i(x; θ̂i). Maximizing the logarithm of Equation (15) with respect to λ and

assuming T observations finally results in:

λ̂ = argmax
λ

[
T

n−1∑
i=1

ln(1 + iλ)− (λ+ 1)
T∑
t=1

n∑
j=1

ln ûj,t

−
(
1

λ
+ n

) T∑
t=1

ln

(
n∑

k=1

ûk,t
−λ − n+ 1

)]
. (16)

2.3 Portfolio Optimization

After estimating the marginal distributions and the copula, we are now able to proceed

with the portfolio optimization. First, we simulate a large sample consisting of Q obser-

vations of each asset’s rate of return distribution in the copula. Therefore, we generate,

for each of the n assets, Q realizations out of a (0, 1)-uniform distribution resulting in n

Q-dimensional vectors denoted as Xk, k = 1, . . . , n. Subsequently, we transform the inde-

pendent uniformly distributed random variables Xk to dependent uniformly distributed

random variables Yk using Bayes’ theorem. For an Archimedean copula the conditional

probability of Yk, under the assumption that Y1 = X1, can be obtained for each observa-

tion q = 1, . . . , Q by the following equation:

yk,q = Ck(yk,q|y1,q, . . . , yk−1,q)

=

∂k−1

[
γ[−1]

(
k∑

j=1

γ(xj,q)

)]
/∂u1 . . . ∂uk−1

∂k−1

[
γ[−1]

(
k−1∑
j=1

γ(xj,q)

)]
/∂u1 . . . ∂uk−1

∀k = 2, . . . , n; q = 1, . . . , Q.(17)
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Applying Equation (17) to the n-dimensional Clayton copula results in:

y1,q = x1,q

y2,q =

(
y−λ
1,q

(
x
− λ

λ+1

2,q − 1

)
+ 1

)− 1
λ

...

yn,q =

((
n−1∑
k=1

y−λ
k,q − n+ 2

)(
x
− λ

λ(1−n)−1
n,q − 1

)
+ 1

)− 1
λ

. (18)

Following, the Q realizations of the n dependent uniformly distributed random variables

are transformed into simulated rates of return by applying the inverses of the marginal

distribution functions of the copula:

rn,q = F−1
A/C,n

(
yn,q; θ̂n

)
, (19)

where F−1
A/C,n(·) denotes the inverse of the skewed t-distribution according to Azzalini and

Capitanio (2003). This finishes the third step of our procedure and we now proceed with

the construction of the efficient frontier.

Since we do not assume a multivariate normal distribution of portfolio returns, we cannot

generate an efficient frontier with respect to expected returns and standard deviations of

the portfolios.6 Thus, we decide to use CVaR instead of standard deviation. As shown

by Acerbi and Tasche (2002), CVaR is a coherent risk measure, i.e. it is sub-additive,

monotonous, positively homogeneous and translation invariant. CVaR, also denoted as

expected shortfall, is defined as the expected value of rates of return R lower or equal to

the value-at-risk (VaR) for a given probability α:

CVaR = E[R|R ≤ VaRα]. (20)

Optimization of the portfolio weights is done by minimizing CVaR for a given portfolio

rate of return:

min
VaR,w

CVaR

s.t.

μw ≤ −R̄

wT1 = 1, (21)

where w denotes the vector of the asset’s weights within the portfolio, μ denotes the vector

6 We refer back to footnote 2 and omit the discussion about distributions of the location-scale class.
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of expected rates of return of the single assets, R̄ denotes the portfolio’s target rate of

return, and 1 denotes the vector of ones.

We choose Monte Carlo approximation to minimize CVaR according to Rockafellar and

Uryasev (2000). CVaR of a continuous random variable can be described by the following

integral:

CVaR =
1

1− α

f(R,w)≤VaRα(R)∫
−∞

f(R,w)p(R,w) dw, (22)

where f(R,w) denotes the portfolio’s return function and p(R,w) denotes the probability

distribution function. Equation (22) can be linearly approximated by:

̂CVaR = VaR +
1

(1− α)Q

Q∑
q=1

max
[−wT rn,q − VaR , 0], (23)

where rn,q denote our simulated rates of return described above. Given the simulated

sample of n·Q rates of return, the optimization problem given in Equation (21) rearranges

to:

min
VaR,w

̂CVaR = VaR +
1

(1− α)Q

Q∑
q=1

zq

s.t.

zq ≥
n∑

i=1

−wiri,q − VaR, q = 1, . . . , Q

zq ≥ 0, q = 1, . . . , Q
n∑

i=1

μiwi ≥ R̄

n∑
i=1

wi = 1 (24)

To derive the efficient frontier we repeat the optimization with different target rates of

return. To enhance computation time, the first optimized portfolio is the minimum CVaR-

portfolio. Subsequently the target rate of return is increased by an incremental amount

until the optimized CVaR equals the target CVaR.

2.4 Benchmark Models

Our approach described in the previous sections is repeated at each point in time where

the portfolio is re-weighted. To analyze the influence of incorporating either asymmetries

in the marginal distributions or asymmetries in the dependence structure we consider

two benchmark models. The first benchmark model is portfolio optimization according to

10



Markowitz (1952). With this benchmark model we can analyze the additional value gen-

erated by incorporating both asymmetries. The second benchmark model is an adjusted

approach according to Hatherley and Alcock (2007). Here, normally distributed rates of

return and a dependence structure following a Clayton copula are assumed. Compared

with our model, we can analyze the additional value generated by incorporating asym-

metric marginal distributions instead of normal distributions.7 To ensure comparability

the target CVaR in our approach and in the second benchmark approach are identical.

Additionally, portfolio optimization according to Markowitz (1952) is done for a variance

equal to the variance of the optimal portfolio of the second benchmark model for each

point in time. Thus, the risk level in every model should be equal.

3 Data Set and Preliminary Results

In our study we analyze portfolios consisting of 16 stocks from the EURO STOXX 50.

The EURO STOXX 50 is the most commonly cited stock index for companies in the

Eurozone and, therefore, ”. . . provides a Blue-chip representation of supersector leaders

in the Eurozone.”8 It is separated into 18 industry sectors and contains stocks from nine

Eurozone countries. The time period of our data set ranges from March 2001 to December

2009, which equals 2,250 trading days (after excluding holidays). Due to diversification

purposes we choose the largest company of each industry sector which was listed in the

EURO STOXX 50 over the whole time period of the data set.9 The remaining 16 stocks

of our data set comprise approximately 44 percent of the EURO STOXX 50. Table 1

provides an overview of the chosen stocks, their industry sectors and their corresponding

weights in the EURO STOXX 50.

The total time period of 2,250 trading days is subdivided into 351 subperiods each covering

500 trading days, starting with the first 500 trading days and than moving the time window

five days on. Thus, we assume that the portfolio is re-weighted every five trading days and

the previous 500 trading days are used to estimate the distribution parameter, the copula

parameter and the optimal portfolio weights. The whole estimation and optimization

procedure described in Section 2 is carried out for each subperiod. To analyze the impact

of shorter time periods on the estimated distribution parameters, the copula parameter

and the corresponding optimal portfolios, we additionally subdivide the total time period

7 The benchmark model is called ”adjusted” since Hatherley and Alcock (2007) use a constant copula
parameter for their portfolio optimization instead of re-estimating the copula parameter for each point
in time as we do.
8 See www.stoxx.com.
9 For two industry sectors there was only one company assigned to that industry sector which was not
listed over the whole time period of the data set. Therefore, we excluded these two sectors of industry.
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Table 1: Composition of the data set
The table shows the composition of the data set, the corresponding industry sector and the weight of

each company in the EURO STOXX 50.

Number Company Sector Weight in the
EURO STOXX 50

(1) Daimler AG Automobiles & Parts 4.37%

(2) Banco Santander SA Banks 11.28%

(3) BASF SE Chemicals 5.92%

(4) CRH PLC Construction & Materials 1.82%

(5) Deutsche Börse AG Financial Services 1.50%

(6) Unilever NV Food & Beverage 4.90%

(7) Sanofi-Aventis SA Health Care 8.54%

(8) Siemens AG Industrial Goods & Services 9.00%

(9) Allianz SE Insurance 5.90%

(10) Vivendi SA Media 3.42%

(11) Total SA Oil & Gas 13.21%

(12) Philips Electronics NV Personal & Household Goods 3.23%

(13) Carrefour SA Retail 3.05%

(14) Nokia Corp. Technology 6.06%

(15) Telefónica SA Telecommunications 10.11%

(16) E.ON AG Utilities 7.68%

to 401 subperiods each covering 250 trading days where again each portfolio is re-weighted

every five trading days.10

At first, we want to analyze the rates of return distributions. As Table 2 shows, all

distributions exhibit large kurtosis. Additionally, 12 out of the 16 stocks exhibit a positive

skewness indicating that these return distributions have more realizations on the left tail of

the distribution. The total number of rejections of the Jarque-Bera test over all subperiods

for the 250-days subperiods and the 500-days subperiods for each stock support the result

of non-normally distributed rates of return. With more than 50 percent of the stocks the

assumption of normally distributed rates of return is rejected for all subperiods for the

500-days subperiods.

We also analyze whether the skewed t-distribution is a good estimator for the rate of

return distributions. Therefore, we apply both a two-sample Kolmogorov-Smirnov test

and a two-sample Cramér-von Mises test to check whether the realized rates of return

and a simulated sample of the corresponding skewed t-distribution belong to the same

underlying distribution. We perform both tests for each stock and for each subperiod with

10We are aware of the fact, that this methodology leads to overlapping data samples. Nevertheless,
this ”rolling window” approach is frequently used for performance measurements.
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Table 2: Descriptive statistics of the data set
The table shows a summary of statistics for the 16 stocks of the data set. For each stock’s

rates of return column 2 to 5 show the mean (μ̂), the standard deviation (σ̂), the kurtosis

(Kurt), and the skewness (Skew) for the total time period. Columns 6 and 7 show the total

number of rejections of the Jarque-Bera test over all subperiods of the data set for each

stock for the 500-days subperiods (out of 351 subperiods) and the 250-days subperiods (out

of 401 subperiods), respectively.

Company μ̂ σ̂ Kurt Skew No. of No. of
rejections rejections
(500) (250)

(1) 0.00012 0.02438 9.29663 0.51536 337 283

(2) 0.00029 0.02261 8.36405 0.32338 351 278

(3) 0.00044 0.01997 10.26965 0.46718 277 359

(4) 0.00031 0.02211 7.77878 −0.01085 351 336

(5) 0.00077 0.02331 9.97090 0.53588 351 328

(6) 0.00017 0.01558 7.69843 −0.15476 351 380

(7) 0.00016 0.01876 7.71408 0.18904 351 377

(8) 0.00016 0.02475 8.13711 0.20673 351 211

(9) −0.00022 0.02666 9.71189 0.53303 345 335

(10) −0.00018 0.02679 21.41037 −0.56964 323 287

(11) 0.00023 0.01794 9.47238 0.34216 315 385

(12) 0.00008 0.02668 6.01912 0.18645 326 370

(13) −0.00009 0.01912 6.78463 0.00764 351 303

(14) −0.00007 0.02871 8.20392 −0.14698 336 367

(15) 0.00022 0.01791 8.51584 0.37633 351 401

(16) 0.00040 0.01960 10.88825 0.37169 351 292

the null hypothesis that realized and generated returns belong to the same underlying

distribution. The results are presented in Table 3 for both the 500-days subperiods and

the 250-days subperiods.

According to the two-sample Kolmogorov-Smirnov test the null hypothesis is only re-

jected in less than one percent of all subperiods over all stocks on a significance level

of five percent for both the 500-days subperiods and the 250-days subperiods. The two-

sample Cramér-von Mises test rejects the null hypothesis in 8.5% of all subperiods over

all assets on a significance level of five percent for the 500-days subperiods and 10.8% for

the 250-days subperiods. As a result, the skewed t-distribution is a much more accurate

estimator for the rate of return distributions than the normal distribution. The behavior

of the estimators on the left and right tail of the return distribution is analyzed via the

presentation of the quantile-quantile (QQ) plots for each stock. Figure 4 in Appendix

1 shows the 16 QQ plots for the first subperiod assuming skewed t-distributed rates of

return. Figure 5 in Appendix 1 shows the corresponding QQ plots assuming normally
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Table 3: Nonparametric tests
The table shows a summary of statistics for the 16 stocks of the

data set. For each stock column 2 and 3 show the total num-

ber of rejections of the two-sample Kolmogorov-Smirnov (KS)

test and for the two-sample Cramér-von Mises (CM) test on

a significance level of five percent over all 500-days subperiods

of the data set (out of 351 subperiods), respectively. Column

4 and 5 show the total number of rejections of the two-sample

KS test and for the two-sample CM test on a significance level

of five percent over all 250-days subperiods of the data set (out

of 401 subperiods), respectively.

Company 351 subperiods 401 subperiods
KS test CM test KS test CM test

(1) 5 24 2 44

(2) 1 56 1 54

(3) 1 47 2 56

(4) 4 25 8 28

(5) 2 22 0 56

(6) 1 27 2 44

(7) 3 24 3 39

(8) 2 45 2 42

(9) 1 26 8 34

(10) 4 15 3 39

(11) 2 27 7 36

(12) 10 13 5 37

(13) 6 22 1 58

(14) 3 25 2 33

(15) 3 44 2 46

(16) 4 26 3 47

distributed rates of return. Both figures are presented for the 500-days subperiods. Fig-

ures for the 250-days subperiods are omitted because they show similar findings. As the

previous results indicate, again, the skewed t-distributions are much more accurate for

the estimation of rates of return distributions. Especially the tail behavior of the skewed

t-distribution fits better than the normal distribution resulting in less and lower outliers

on the tails of the QQ plots.

After comparing the reliability of skewed t-distributions and normal distributions as es-

timators for the rate of return distributions we now analyze the dependence structure

between the 16 stocks. Since we use a Clayton copula, we assume lower tail dependence

between the marginal distributions. Additionally, we assume that the strength of the

tail dependence changes with the business cycle of the economy as pointed out by, e.g.,
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Ang and Cheng (2002), Hartmann et al. (2004), and Hu (2006). Thus, we expect the

copula parameter to increase in bear markets and decrease in bull markets. To support

our assumptions we present the development of our copula parameter in Figure 1. We

present both, the copula parameter assuming skewed t-distributed rates of return and

normally distributed rates of return. Furthermore, the compounded rates of return for

the EURO STOXX 50 are also presented in Figure 1. The whole figure is derived by using

the 500-days subperiods. Each compounded return equals the compounded return for the

preceding 500 trading days.

Figure 1: Compounded rates of return of the EURO STOXX 50 and development of the
copula parameter

The upper figure shows the compounded rates of return of the EURO STOXX 50 for each
rolling time window. Here, the return is computed as the compounded return over the
previous 500 trading days. The lower figure shows the development of the copula parameter
assuming skewed t-distributed returns and normally distributed returns, respectively. Each
point in time denotes the copula parameter estimated over the previous 500 trading days.
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Both copula parameters tend to co-move inversely with the compounded rates of return

of the EURO STOXX 50 indicating that both types of marginal distributions, namely the

skewed t-distribution and the normal distribution, possess lower tail dependence where the

strength of this interrelation depends on the business cycle of the economy. This result is

verified by the correlation coefficients of the copula parameter with the compounded rate
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of return. For the Clayton copula assuming skewed t-distributed rates of return the cor-

relation coefficient between the compounded rate of return of the EURO STOXX 50 and

the copula parameter equals −0.7760 which is significant on the one percent significance

level. The correlation between the copula parameter, assuming normally distributed rates

of return, and the compounded return of the EURO STOXX 50 equals −0.6810 which is

also significant on the one percent significance level.

However the level of lower tail dependence is quite different. The amount of the copula

parameter, assuming skewed t-distributed rates of return, is almost twice as large as the

copula parameter assuming normally distributed rates of return. As already mentioned,

the empirical return distributions of the 16 stocks are mostly positively skewed indicating

more observations at the lower tail. This tail behavior is incorporated when using skewed

t-distributed return distributions. Thus, we suggest that the assumption of normally dis-

tributed rates of return underestimates co-movements of stock returns especially in bear

markets.11

4 Portfolio Results

We are now in the position to discuss the results of our portfolio optimization (HR)

approach and those of the benchmark approaches. The benchmark approaches are the

Markowitz (M) approach and the adjusted approach according to Hatherley and Alcock

(2007) denoted with HA. All approaches are derived for the 250-days subperiods and the

500-days subperiods, respectively. For the two downside-oriented optimization approaches,

a CVaR of 0.0225 is arbitrarily chosen. As described in Section 3 the optimal portfolio

weights are computed for a five days interval with either the previous 250 or 500 trading

days. So, the portfolio is assumed to be re-weighted every five days with an initial amount

of 100e. All gains in each subperiod are reinvested.

At first, we present the overall portfolio performance of the three approaches for the 500-

days subperiods in Figure 2. Our approach and the HA approach dominate the Markowitz

approach over nearly the total time period. Additionally, our approach also dominates the

adjusted approach according to Hatherley and Alcock (2007) except for the last quarter

year. These results suggest that accounting for asymmetric dependence leads to improved

portfolio performance. The performance can be further improved by accounting for asym-

metric rates of return distributions.12

11The figure for the 250-days subperiods is omitted since it leads to similar results. Again, the com-
pounded rates of return of the EURO STOXX 50 co-move inversely with both copula parameters. The
correlation coefficients between the compounded rate of return of the EURO STOXX 50 and the copula
parameter assuming skewed t-distributed rates of return and normally distributed rates of return equal
−0.5636 and −0.5543, respectively and are also significant on the one percent significance level.
12The result for the 250-days subperiods is presented in Appendix 2.
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Figure 2: Portfolio performance for the 500-days subperiods
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To emphasize our results we compute risk-adjusted mean returns for the three approaches.

As mentioned in Section 2.4, the three approaches are assumed to have similar risk but

only for the period used for optimization. Since we use optimized portfolio weights for

the next five days, the approaches need not to be at the same level of risk. Therefore, we

compute the average return per unit of downside risk, measured by lower semivariance,

for different time periods. We choose semivariance because asymmetric rates of return

distributions are applied and so the portfolio’s rate of return distribution may not be

symmetric. Table 4 shows the monthly, semiannually and annually average risk-adjusted

return and their corresponding standard deviations.

The presented results are slightly ambivalent. Regarding the 500-days subperiods, the

average downside-risk-adjusted returns are the highest for our approach, no matter which

time period is considered. However, standard deviations are the highest of all approaches

for the monthly and semiannually time frame and the second highest for the annually

time period. The Markowitz approach is dominated by both downside-oriented approaches

regarding the average risk-adjusted return and only possess the lowest standard deviation

for the semiannually time period.

Regarding the 250-days subperiods again our approach outperformed the benchmark

strategies on a monthly basis regarding the average risk-adjusted return. For the other two
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Table 4: Risk-adjusted returns
The table shows for both the 500-days and the 250-days subperiods the

average downside-risk-adjusted return and the standard deviation for

monthly, semiannually and annually time spans, respectively.

Approach 500-days 250-days
subperiods subperiods
μ̂ σ̂ μ̂ σ̂

M 0.0187 0.2410 0.0499 0.2148

Monthly HA 0.0257 0.2348 0.0495 0.2338

HR 0.0351 0.2508 0.0510 0.2414

M 0.0140 0.0894 0.0366 0.0880

Semiannually HA 0.0277 0.0944 0.0375 0.0868

HR 0.0319 0.0968 0.0323 0.0772

M 0.0112 0.0739 0.0363 0.0651

Annually HA 0.0237 0.0694 0.0345 0.0662

HR 0.0264 0.0721 0.0308 0.0614

time periods our approach shows the lowest standard deviation where the HA approach

possesses the highest average return for the semiannually time period and the Markowitz

approach the highest average return for the annually time period. The Markowitz ap-

proach is dominated for nearly every time span for both lengths of subperiods. One

possible reason for the lower performance of our approach for the 250-days subperiods

might be that, against the usual empirical findings, the rates of return distributions tend

to be more Gaussian since the average of the estimated degrees of freedom for the skewed

t-distributions increases significantly for nearly all stocks.

In the next, step we separate the portfolio return changes in positive and negative changes

and analyze their means and standard deviations. This is done to check whether the

downside-oriented optimization approaches lead to better results for negative portfolio

returns. The findings are presented in Table 5. Regarding the downside changes, the

downside-oriented optimization approaches dominate the Markowitz approach with re-

spect to the mean downside change. Additionally, for the 500-days subperiods the stan-

dard deviations of both approaches are also smaller than the one of the Markowitz ap-

proach. When analyzing the upside changes our optimization approach and the Markowitz

approach perform similar in case of the 500-days subperiods but the downside-oriented

approaches fail to outperform the Markowitz approach for the 250-days subperiods.

Finally, Figure 3 presents the portion of long positions within the portfolio for the 500-days

subperiods.13 Here, the portion of long positions for the Markowitz approach is always

smaller than the portions of long positions for the two downside-oriented approaches.

13The figure for the 250-days subperiods is omitted since the results are nearly identical.
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Table 5: Upside and downside changes of the portfolio returns
The table shows the means and standard deviations for upside and down-

side changes of the portfolio returns for both the 250-days subperiods

and the 500-days subperiods, respectively.

Approach 500-days 250-days
subperiods subperiods
μ̂ σ̂ μ̂ σ̂

M 0.0281 0.0241 0.0332 0.0356

Positive HA 0.0268 0.0219 0.0288 0.0354

HR 0.0277 0.0249 0.0292 0.0324

M −0.0278 0.0269 −0.0321 0.0366

Negative HA −0.0250 0.0234 −0.0309 0.0380

HR −0.0259 0.0240 −0.0320 0.0385

Short positions are taken to profit from negative stock returns. However, the potential of

diversification is reduced with increasing correlation of the assets. The figures of Table 3

lead to the suggestion that diversification benefits for downside movements of the stocks

are overestimated by the Markowitz approach. Furthermore, there may occur some reg-

ulatory difficulties regarding the high portion of short positions within a portfolio since

some funds are subject to short-sale constraints or limits.

5 Conclusion

The idea of the paper was to analyze whether incorporating asymmetric dependencies and

asymmetric distributions will lead to an improved portfolio selection. As a benchmark

served the well-known portfolio optimization by Markowitz (1952) where multivariate

normally distributed portfolio returns are assumed. We applied an adjusted version of the

approach proposed by Hatherley and Alcock (2007) where asymmetric dependencies are

modelled via a Clayton copula and stock returns are assumed to be normally distributed.

In our approach, we additionally assumed skewed t-distributed rates of return for each

single asset. We chose the skewed t-distribution according to Azzalini and Capitanio (2003)

since computational stability was best for this version of the distribution.

We found that the incorporation of asymmetric dependencies between single assets im-

proved the portfolio performance for both different lengths of the subperiods and dif-

ferent time horizons. The enhancement of the portfolio performance depended on the

chosen length of the subperiod when incorporating asymmetric distributions. In general,

the skewed t-distribution proved to be a more accurate estimator for the rate of return

distributions than the Gaussian distribution especially with respect to the tail behavior.

Therefore, we observed higher risk-adjusted average returns compared to the Markowitz
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Figure 3: Portion of long positions within the portfolios
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approach at least for the 500-days subperiods. Regarding the 250-days subperiods the

rate of return distributions tend to be more Gaussian-style and so the adjusted approach

according to Hatherley and Alcock (2007) was superior. All results were obtained by an-

alyzing a portfolio consisting of stocks from the EURO STOXX 50 where we diversified

the portfolio by including only one stock of each industry sector.

All portfolio weights were optimized by using estimators of the preceding period. This

was done to ensure that all approaches exhibit a similar amount of model biases. The

performance of our approach may be improved when using more sophisticated estima-

tion models for future stock returns. However, the incorporation of asymmetry in return

distributions as well as in their dependence structure leaded to better overall portfolio

performance compared to the standard symmetric Markowitz approach.
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Appendix 1

Figure 4: QQ plots using skewed t-distributions

The figure shows the QQ plots for each stock assuming skewed t-distributed rates of return
for the first subperiod. Realized returns are plotted along the x-axis and simulated returns
are plotted on the y-axis.
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Figure 5: QQ plots using normal distributions

The figure shows the QQ plots for each stock assuming normally distributed rates of return
for the first subperiod. Realized returns are plotted along the x-axis and simulated returns
are plotted on the y-axis.
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Appendix 2

Figure 6: Portfolio performance for the 250-days subperiods
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