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Abstract 

Random yields from production are often present in manufacturing systems and there are several 

ways that this can be modeled. In disassembly planning, the yield uncertainty in harvesting parts 

from cores can be modeled as either stochastically proportional or binomial, two of these 

alternatives. A statistical analysis of data from engine remanufacturing of a major car producer 

fails to provide conclusive evidence on which kind of yield randomness might prevail. In order 

to gain insight into the importance of this yield assumption, the impact of possible yield 

misspecification on the solution of the disassemble-to-order problem is investigated. Our results 

show that the penalty for misspecifying the yield method can be substantial, and provide insight 

on when the penalty would likely be problematic. The results also indicate that in the absence of 

conclusive information on which alternative should be chosen, presuming binomial yields 

generally leads to lower cost penalties and therefore preferable results. 

 

Keywords:  Remanufacturing, Disassembly, Random yields, Disassemble-to-order problem,  

  Binomial yields, Stochastically proportional yields. 
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1 Introduction and Literature Review 

1.1 Motivation 
Conducting sustainable operations demands that firms incorporate environmental concerns and 

stakeholder points of view alongside shareholder profit. Product recovery management (PRM) 

and reverse logistics have been seen as an integral part of sustainability, allowing for increased 

revenue and reduced environmental burden, as shown in e.g. Atasu et al. (2008), Wu and Pagell 

(2011). Within PRM, remanufacturing, when a firm takes returned products, disassembles them, 

inspects the parts, and reassembles these parts into “good as new” products has received much 

attention and is generally accepted as one of the more advantageous (both in terms of revenue as 

well as environmental burden) product recovery options. Examples of products that are 

remanufactured include relatively simple products such as Kodak single use cameras (Guide et 

al. (2003)) and waste electronic and electrical equipment (shown in Webster and Mitra (2007)) to 

complicated items like jet turbine engines (Guide and Srivastava (1998)) and Xerox photocopiers 

(Guide et al. (2003)).  

 

Remanufacturing is usually done in an industrial setting where varying products from a certain 

manufacturer are disassembled and reassembled. In order to reassemble products, a certain 

number of parts must be available, as can be calculated by examining products’ bills of material.  

These parts are gained (mostly) from the disassembly of returned products, and might be 

obtainable from external vendors. A disassemble to order problem concerns itself with how 

many of each type of returned product to disassemble in order to meet this demand. This 

problem is complicated by several factors. First, the same part might be contained in several 

products, an aspect referred to as commonality. Second, since these returned products differ in 

regard to quality, a stochastic yield problem results in which one is never sure how many good 

quality parts will be harvested from the disassembly of a certain returned product (see e.g. Guide 

(2000) p. 474-475 and 479-480). This is somewhat akin to a production yield problem in which 

one is unsure how many good quality items will be produced by an unreliable production 

process, as is seen in practice e.g. semiconductor manufacturing. The impact of random yields 

can be seen not only in operational issues like production scheduling (e.g. New and Mapes 

(1984)) but also in strategic-tactical level decisions like location and capacity (Bohn and 
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Terwisch (1999)). As a matter of fact, this problem with stochastic yields is more complex than 

standard stochastic production yield problems. This is because in the most general case, with 

many products, some of whom have common parts with other products, joint disassembly 

decisions must be made which consider not only each leaf contained in the considered product, 

but also other disassembly decisions of products with common parts and their yields. In this 

manner, the disassembly decisions of the products are linked through the stochastic yields of the 

others which contain common parts. In general, it is not possible to simply separate these 

problems to allow for a decomposed optimal solution.   

 

Until now, most approaches to incorporate stochastic yields into planning have assumed 

stochastically proportional random yields, which presumes that the yield rate distribution does 

not change by increasing or decreasing the number of products disassembled. Another stochastic 

yield modeling approach, binomial random yields, deviates from this property and assumes 

independence of each unit’s yield within an assembly lot. There has been absolutely no attention 

paid in the literature as to how to discern between these two approaches in practice, i.e. how to 

test whether or not this critical assumption can be presumed.  

 

Using actual yield data obtained confidentially from an industrial partner, we will first test to see 

if it can be concluded which modeling approach is more fitting for the data. This will first require 

selecting an appropriate statistical test, since literature provides little advice. The contribution 

will also aim at exploring the sensitivity of decisions to assumptions of random yield modeling 

methodologies. Our results will (1) highlight differences between these two modeling 

alternatives, (2) provide guidance to others on statistical tests to use in testing the assumption in 

practice, (3) show the practical application of testing real world data and illustrate typical results, 

and (4) explore how misspecification of the yield type might impact the results. 

1.2 Relevant Literature 

In this section, we will start by examining stochastic yield literature in general, where differing 

modeling approaches are presented. We will then review some contributions to random yield 

literature in remanufacturing and finally focus on the disassembly problems with stochastic 

yields.  
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Yano and Lee (1995) provide a classic reference, a comprehensive review of dozens of 

contributions to the field of stochastic yields in lot sizing. The review starts by discerning 

modeling approaches, something we will later draw on. In their work, they review contributions 

differentiating between continuous and discrete time, single and multiperiod models, also 

including assembly, rework, and coproduction systems.  

 

Another noteworthy review is afforded by Grosfeld-Nir and Gerchak (2004), where the emphasis 

is more on multistage production systems.  

 

A more specific recent review of modeling for semiconductor manufacturing is given by Kumar 

et al. (2006). Several issues unique to the industry, viz. special defects and radial yield losses, are 

examined. The work also contains remarks concerning the periphery of the system in complex 

manufacturing systems.  

 

Ben-Zvi and Grosfeld-Nir (2007) examine serial systems that must fulfill a rigid demand. Their 

analysis includes binomial, interrupted geometric, and all-or-nothing yields, and the work 

provides a heuristic for such serial production systems.  

 

Tajbakhsh et al. (2010) examine lotsizing under binomial yields in a context where the yields can 

be improved by increasing the order cost and unit costs. They formulate and compare two 

models, a return model and a repair model.  

 

Teunter and Flapper (2006) examine random yields in production and rework, in a context 

stemming from their work with a pharmaceutical concern. Here, the decisions include when to 

remove a batch from the production tank and send it to bottling, since rework can only take place 

before bottling.  

 

Production planning at a sawmill is planned by Zanjani et al. (2010), where random yields are 

incorporated by way of a recourse model where different scenarios result in yield coefficients 

which are subject to certain probabilities. In this work, they are obtaining a yield distribution that 
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can be employed by sampling output obtained from 300 logs, yielding a yield distribution which 

can be utilized by the recourse model. 

 

One outcome of surveying these contributions is that several different types of yield randomness 

are modeled, mainly stochastically proportional, binomial, and interrupted geometric yield. 

Additionally, no literature is found which uses real-world yield data in order to test which yield 

model might fit best. This also holds for the next articles which deal with yield uncertainty in 

remanufacturing systems, providing some recent, more problem-specific contributions from 

literature. 

 

Bakal and Akcali (2006) deliberate the effects of yield uncertainty on remanufacturing systems 

and its impact on pricing. In their paper, the demand for remanufactured items as well as supply 

of returned products is influenced by the prices offered. They also examine the impact of yield 

uncertainty on profitability of the remanufacturing operation as well as the value of information 

in the context. 

 

Galbreth and Blackburn (2006) point out that through sorting policies, policies which decide 

which returns are to be remanufactured and which returns would be relegated to material 

recycling, yield uncertainty can be diminished. The authors analyze how many returned products 

should be obtained from a third party. Naturally, the more unsorted returns acquired, the more 

selective the remanufacturer can be on deciding which returns to remanufacturer. This work was 

extended in Galbreth and Blackburn (2010) by more completely incorporating the trade-off 

between acquisition cost, remanufacturing cost, and disposal costs in the system. The authors 

show how their methods are applied on cases stemming from their experience with cell phone 

and imaging equipment manufacturers.  

 

Ferguson et al (2009) analyze a remanufacturing system based on experience with postage and 

mailing machines. Here, the yields of disassembly were random and influenced by the quality of 

the returned products. The returned products were able to be graded and customers would 

receive a higher amount for better quality returns, and due to better yields these returns also 
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resulted in less remanufacturing cost. Through incentivizing better quality returns and receiving 

better returns resulting in lower remanufacturing costs, substantial cost savings were realized. 

 

Mukhopadhyay and Ma (2009) consider a joint system where new and recovered components 

can be used for remanufacturing, discerning between long and short lead times for new parts. 

They model yields from product recovery using the stochastic proportional approach and provide 

insight into the value of information in this context, which also includes demand stochasticity. 

 

Teunter and Flapper (2011) consider multiple classes of returned products and develop optimal 

procurement and disassembly decisions for both deterministic and stochastic demand, 

emphasizing the impact of yield uncertainty. Here, unlike in a disassemble-to-order problem, 

there is only one part needed for remanufacturing, commonly interpreted as a single critical 

major part for which yields are random.  

 

Panagiotidou et al (2012) examine optimal procurement decisions under random yields in 

remanufacturing, where a recovered item is either remanufacturable or not. The authors illustrate 

the impact of sampling on this context, where Bayesian learning allows for better return 

procurement decisions.  

 

Lastly, and most recently, Tao et al. (2012) probe a remanufacturing setting with stochastic 

yields, demand, and supply of returned products. Here, like Teunter and Flapper (2011) they 

restrict their analysis to one product and one item needed for remanufacturing.  

 

The last group of articles is more specifically concerned with yield uncertainty in disassemble-

to-order systems with complete disassembly, most closely related to this contribution. 

 

In this area, Inderfurth and Langella (2003) provide the first contribution to disassemble to order 

systems under stochastic proportional yields. The work was extended in Inderfurth and Langella 

(2006) providing single period heuristics of varying complexity developed by decomposition. 

Langella (2007) extends this somewhat for planning multiple periods, providing and testing 

heuristics for the multiperiod problems in addition to developing heuristics for deterministic 
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yield cases with and without constraints on returned items. Inderfurth and Langella (2008) 

provide recourse model formulations for both the single and multiple period problem with 

stochastic yields and provide a glimpse into the computational complexity of models.  

 

A similar stream examined the disassemble-to-order problem under multiple decision criteria. 

Imtanavanich and Gupta (2004) first extend the deterministic yield problem put forth by Kongar 

and Gupta (2002) utilizing the adjusted yield values put forth in Inderfurth and Langella (2006). 

This is then further extended to the multiple period case by Imtanavanich and Gupta (2005). 

Most recently, Kongar and Gupta (2006) examine multicriteria decisions under uncertainty in 

disassemble to order systems by using fuzzy goal programming to determine the right mix of 

products to be disassembled to meet a specific demand for the leaves.  

 

In the preceding remarks, we have focused only on disassemble to order problems with complete 

disassembly under stochastic yield conditions. For a more broad and comprehensive review, 

including deterministic yield, multi period, and incomplete (single product) disassembly, the 

reader is referred to Langella (2007, pp. 12-16). 

 

The unique contribution of this study is twofold. First, based on an analysis of empirical data 

from the disassembly area, we investigate which types of random yield processes can be 

identified in practice. Given these findings, we show how different yield models can be 

incorporated in disassemble-to-order problems and analyze which drawbacks we have to expect 

in solving these problems if we misspecify the yield process and use the wrong yield model. 

1.3 Outline  

The remainder of this paper is organized as follows. In the following section, we will begin by 

introducing the disassemble-to-order problem and the impact of yield uncertainty in 

complicating its solution. In the third section, we will examine the two relevant (stochastically 

proportional and binomial) methods to model yield uncertainty and describe how real industrial 

data was tested to determine whether one of the two modeling approaches best fit. In the fourth 

section, we will examine how sensitive solutions to the problem are when the yield process is 
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misspecified. Concluding comments and an outlook on future research is afforded in the final 

section.  

2 Disassemble-to-order problem and yield uncertainty  

In this section, we will begin by introducing the disassemble-to-order problem. This will be 

followed by an examination of the effects of yield uncertainty on planning in this realm. 

2.1 The disassemble-to-order problem 

The disassemble-to-order problem stems from demand driven remanufacturing planning. In 

remanufacturing, products are taken back from consumers either at the end of their useful lives 

or the end of their use by consumers. These returned products, called cores, are collected and 

transported back to a remanufacturing facility where they await disassembly. Once disassembled, 

the parts, called leaves, are inspected to good as new quality standards. Any leaves which fail to 

meet these standards are either replaced by new components or leaves harvested from the 

disassembly of another core. The leaves are then reassembled into a remanufactured product that 

by its very definition meets the quality standards of a newly produced item. From the firm’s side, 

it produced additional revenue and from the planet’s point of view it saves the landfill space 

needed to dispose of the core and the virgin material consumption needed to produce the new 

product.  

In demand-driven remanufacturing, a certain specified demand for remanufactured products is 

given. In the authors’ experience with automotive engine remanufacturing operations, it is very 

often the case that the demand is specified by marketing and distribution. Once the demand for 

remanufactured products has been specified, the number of leaves which must be obtained can 

be calculated through a material requirements planning bill of material explosion. A disassemble 

to order problem is concerned with calculating the number of cores to disassemble in order to 

fulfill this demand.  

 

As shown in Figure 1, the cores, represented by numbered boxes on the left side of the diagram, 

are collected from the marketplace, transported to the remanufacturing facility, and sorted by 

type, to await disassembly. On the demand side, remanufactured units are requested and this 

translates itself into a gross requirement of various leaves by a bill of materials explosion. The 

leaves are shown as lettered circles. With demand for leaves described above, the question 
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becomes how many of each core should be disassembled in order to meet this demand, given that 

some of the leaves are contained in more than one core, and the yields of these leaves are 

stochastic. This disassembly decision is also affected by the opportunity to procure missing 

leaves externally, usually, however, at a higher cost.  

 

Figure 1: A depiction of the disassemble-to-order problem in remanufacturing 

Disassemble-to-order problems can be classified according to several criteria. One can first 

discern between single and multiple core problems, where the former simply seeks to determine 

the number of single products to disassemble, and the latter must make disassembly decisions for 

several cores. It can be seen that in the absence of (any) commonality, multiple product problems 

can be separated into single product problems, and a decomposed solution will be optimal in the 

multiple product case.  

 

Next, we can differentiate between single and multiple period problems. In the former, only one 

period’s demands are specified, and there is no need or ability to hold leaves obtained by 

disassembly for future demands. In the latter, holding leaves harvested in one period and not 

immediately needed for reassembly can satisfy future demand, with given holding costs.  

 

Additionally, one can discern between single or multilevel problems. In the former, only cores 

and leaves are considered and a decision to disassemble a core results in complete disassembly to 

the leaves. In multi-level disassembly, additional items called intermediate items, which are 

neither cores nor leaves, but subassemblies of some leaves contained in a core, are considered. In 
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these models, partial disassembly can take place where some subassemblies are immediately 

further disassembled and others are not. Here, one can hold the subassembly for further 

disassembly (in e.g. a capacitated disassembly situation) or dispose of the subassembly should 

the leaves contained therein be redundant. 

 

Lastly, one can additionally distinguish between problems which contain stochastic elements and 

those who do not. Stochastic elements could include the yield, which we have previously 

discussed results from the quality uncertainty surrounding the recovered core, and the demand 

for parts, as would be the case if parts harvested for disassembly were being used to fulfill 

demand for spare parts. 

 

Within this classification, our contribution would fall within the group where multiple products 

are disassembled (including part commonality) in a single period, under complete disassembly 

conditions (i.e. single level) with deterministic demands and stochastic yields from disassembly.  

There are several costs which are relevant to this decision. First, the cost to procure the core, 

transport it to the facility, disassemble it completely, and inspect the leaves is called the core 

cost. Leaves which must be replaced must be obtained at a leaf procurement cost and they will 

be sourced either from the same supplier who supplied manufacturing operations or from an 

alternative supplier due to the typically small amounts of demand once the product is no longer 

manufactured in mass. Lastly, a leaf disposal cost is incurred when an unneeded leaf is disposed 

of. This cost can be positive or negative, the former being a landfill cost and the latter occurring 

when revenue is generated from e.g. material recycling. In the authors' experience with several 

industrial partners, this can often be negligible, since a small amount of revenue is gained but the 

leaves must be handled and transported to the recycler. 

 

There are a couple of reasons why this disassemble-to-order problem is difficult to solve. First, it 

is often the case that there is commonality in the leaves, i.e. a certain leaf is contained in more 

than one core. This is due to component commonality in manufacturing, a commonly known 

mechanism to reap scale economies in production and procurement. With commonality present, 

a leaf can be harvested from several different cores, and this will require deliberating which core 

is best to source the demand from. This will depend on several things, most obviously the core 
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cost, but less obviously on the fact that the disassembly of a core will result generally in some 

leaves which will be immediately needed and others which may not be immediately needed. This 

becomes even more complicated in a multi-period setting where inventory of leaves will 

effectively decouple supply and demand. The second complication of planning disassembly for 

remanufacturing is the fact that yields from disassembly are almost always stochastic.  

 

Since our contribution is focused on the impact of the yield model choice on the quality of 

disassembly decisions, we will restrict our analysis to a more simple to analyze single-period 

problem setting. In this case, the disassemble-to-order problem under stochastic yields can be 

formulated as a non-linear optimization problem. To this end we introduce some general notation 

which will be used in the following section. The size iQ  of a disassembly lot for a specific core i 

from a set of I cores generates a random yield ( )ik i iY Q Q�( )Y Q( )ik i( )  for each part k from a set K 

incorporated in this core. 

The optimization problem then can be described as follows: 
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Here it is already incorporated that under the described conditions it is always optimal to satisfy 

demand kD  for part k and purchase new parts if demand exceeds the respective yield, and to 

dispose of excess parts if the yield is higher than demand. The corresponding purchasing and 

disposal costs per leaf k are given as p
kc  and d

kc  respectively. Therefore, the remaining decision 

variables are the disassembly batch sizes iQ  of the different cores which always have to be non-

negative. Each disassembling operation results in disassembly costs z
ic  for core type i. From this 

problem description it is obvious that the optimal solution strongly depends on the specific yield 

process ( )ik iY Q( )Y (ik (  that transforms the cores’ batch quantities in yield quantities for the respective 

parts. 
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2.2 Uncertainty in the yield of disassembly 

In our remanufacturing setting, it is easy to see why yield randomness might present even more 

of a problem than it does in traditional settings. First, the yields from disassembly will depend on 

how the product was used (and otherwise treated, e.g. stored) during its life or use by the 

consumer. Second, each leaf might be more or less able to withstand or resist wear and tear i.e. 

leaves will have differing degrees of durability. Lastly, disassembly is known to be a very 

manual process, and operator skill will also affect the yields of disassembly with more skilled 

workers being presumably better able to successfully harvest leaves from cores.  

 

It is also the case here that commonality further complicates this since different cores will very 

likely have differing disassembly yields for the same leaf. This will, in a similar fashion to 

differing core costs, make a straightforward decision far less likely.  

In the following we will assume that the yields of different parts (or groups of parts) from the 

same core are not correlated, since from literature we did not find any evidence for correlation. 

The outcome of each disassembly lot iQ  can be described by its yield rate, defined as 

( ) /ik ik i iZ Y Q Q� ( ) / iZ Y Q Q( ) /ik ik i iik i( ) / . Depending on the type of the yield process, the yield rate mean and variance 

might be affected by the batch size Q  or not. Since this will have a major impact on the optimal 

disassembly policy, it is important to identify which yield model will represent the underlying 

random yield process in the best way. In the next section we will describe the most important 

yield models in this context and discuss their appropriateness, based on an empirical study. 

3 Types of yield randomness: Theoretical models and empirical findings  

In this section, we will start by reviewing various methods for modeling yield uncertainty, 

concentrating on the two methods most applicable to this research. We will then present some 

empirical findings obtained by testing real disassembly yield data from a large automotive 

manufacturing partner. 

3.1 Theoretical modeling alternatives 

There are several methods to model yield uncertainty, e.g. addressed in the classic reference 

Yano and Lee (1995). In our study we only concentrate on two types that are commonly used in 



13 

literature to model supply uncertainty: stochastically proportional and binomial yields. They will 

each be briefly described in the following: 

� Stochastically proportional.   Under this method, the quantity of remanufacturable parts 

is the product of input (i.e. lot size Q) and a random variable representing the proportion 

of good (reusable) items (the yield rate ZZ ). This can be denoted as ik ik iY Z Q� 	 iY Z Qik ik iikZZ k . Here the 

yield rate’s distribution, along with its mean and variance, can be independently specified 

and does not depend on the lot size itself, allowing for greater modeling freedom. As 

noted in Yano and Lee (1995), this is an appropriate modeling approach when production 

is affected by process conditions which vary randomly from lot to lot or when the quality 

of input materials will change unpredictably in different lots. In the remanufacturing 

context, especially varying skills within and working conditions for different disassembly 

teams might cause such a yield type. 

� Binomial.  Here, the yield of the disassembling process follows a typical Bernoulli 

process, where the yield that results depends on the probability of success of each trial 

and the number of trials which is equal to the lot size Q. The total yield ( )ik iY Q( )Y (ik (  is 

binomially distributed with success probability ˆ ikp which is equal to the expected yield 

rate. Under these conditions, the yield rate variance equals ˆ ˆ(1 ) /ik ik ip p Q	 �  and, thus, 

obviously depends on the lot size. Assumptions of this method include dichotomous 

outcomes with a fixed probability of success and independence of the outcome of one 

trial from another one. Such a situation can be expected if the disassembly process is 

stable and the quality of cores is independent between cores within a lot. 

As mentioned in Yano and Lee (1995) there exist more than these two options to model the 

outcome of production processes. Additional modeling approaches would include (1) all or 

nothing, where a process will either yield perfect output or no good output at all, (2) 

stochastically decreasing (sometimes referred to as interrupted geometric) where after a random 

amount of time a process delivers only bad quality items, before which it delivers only perfect 

items, and (3) stochastically increasing, where after a certain amount of time a process will 

deliver perfect output, before which it delivered only bad items. We can note that examining the 

actual yield data makes it clear that none of these three alternatives appear relevant. For 
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disassembly operations both stochastic proportional and binomial models seem to be relevant, 

but up to now we are not aware of any literature that analyzes if one of the yield modeling 

approaches can be used to model a real data set that stems from a disassembly process. In the 

following subsection, we will test actual disassembly yield data to see which of the modeling 

approaches best fit the data. 

3.2 Empirical testing of industrial disassembly data 

The given dataset was obtained from a German car manufacturer that disassembles used engines 

and remanufactures parts that are reusable. Amongst others it contains the daily amount of 

disassembled engines of about three months, that is more precisely 19 days for engine type one 

(E1) and 37 days for engine type two (E2). In the following histogram (see Figure 2) one can see 

that the quantity of engines that are disassembled per day (disassembly lot) for E1 is in between 

2 (once only) and 13 (six times) whereas it varies between 1 and 19 for E2. 
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Figure 2: Number of days and disassembly lot for each engine type 

Additionally to the daily quantity of disassembling operations we received information about the 

outcome (disassembly yield) of the disassembly process for roughly 30 major parts whether or 

not it is possible to remanufacture them and reuse them as a good as new part to satisfy the 

customer demand. This yield data set consists of streams of zeroes and ones where a one 

indicates that the part was successfully harvested and is available for remanufacturing and zero if 

not. With this data on hand we were able to calculate the percentage of reusable parts (yield rate) 
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for each disassembly lot and determined the frequency distribution and corresponding box-and-

whisker plots for three different parts of E2 (see Figure 3). 

 
Figure 3: Histograms of yield rates for three different parts that are contained in E2 

Here we can see that there is not only a high yield rate variability for a part itself but also the 

differences between the yield rates of parts that stem from the same engine type can be very 

different. 

 

In order to test the industrial data, we must first identify characteristics of the two contrasted 

yield modeling alternatives that can be used to discern between the two. Considering first the 

stochastically proportional yield, we are reminded that the variance of the yield rate 2

Z�  must 

remain constant for differently sized lots. For this, we will use the Brown-Forsythe test (Brown 

and Forsythe (1974)) for equality of variances between two groups of lots, one large and one 

small. With binomial yields, however, we expect an independent occurrence of defectives. Here, 

a chi-squared test can be used to test if the total yield resulted from a binomial process with an 

expected success probability. We will further elaborate on each in the following paragraphs in 

turn. 

 

To test for proportional yield, we conducted a test comparing small lots to large lots. In doing 

this, we selected two of the five engine types to analyze in more detail, the engine types E1 and 

E2 since we gain the most extensive data sets for these engines. For engine type E1 we created a 

group called “large” that contains lots with an amount of 12 and 13 and a group called “small” 
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with all lots between 5 and 11. In each case, the lots were standardized to 12 and 5 respectively 

by discarding remaining yield values. This results in nine lots in each group. For the “small” 

group of engine type E2 we composed lots with a size between 6 and 13, while the “large” group 

contained lots of an amount between 14 and 19. Again, the lots were standardized to lot size of 6 

and 14, with remaining values discarded as well as lots of less than 6. Following this procedure 

we get 16 “small” lots and 13 large lots. Having these small and large lot-groups on hand we 

employed a Brown-Forsythe-Test to test for equality of variances between the two groups, see 

Brown and Forsythe (1974). In testing for binomial yields, a Chi-Square-Test (�2) was used to 

test if the yields resulting from each group fit the binomial distribution.  

The results of these tests are summarized in Tables 1 and 2 for some parts of E1 and E2 

respectively for a significance level of 0.05, where a minus sign (-) indicates that the null 

hypothesis, that the data can stem from one of the two mentioned yield models, is rejected and a 

positive sign (+) that it fails to reject the null hypothesis. As it can be seen in the tables, there is 

no clear picture which yield model might fit better. It can be seen for some parts the binomial 

model is rejected while for others it is not. For most parts (and this also holds for the ones 

omitted in the tables) both yield types are candidates for explaining the empirical findings. To 

some extent, this ambiguity might be caused by small sample sizes of our empirical data. Be that 

as it may, on the basis of the available data set none of the two yield models can be excluded 

from the set of potential approaches when modeling the random yield situation. Since this might 

be the case in many practical situations it is important to get some insight into the extent of error 

that occurs when decisions are made under misspecification of the yield process.  

Table 1: Results for engine type E1 Table 2: Results for engine type E2 

 

Part # ��2 
(lot size 5) 

��2 
(lot size 12) 

Brown-
Forsythe 

1 - + + 
2 - + + 
3 - + + 

… 
11 + + + 
12 + + + 

… 
27 + + - 
28 + + + 
29 + + - 

 

Part # ��2 
(lot size 6) 

��2 
(lot size 14) 

Brown-
Forsythe 

1 - - + 
2 - - + 
3 - - + 

… 
11 + + - 
12 + + - 

… 
27 - - + 
28 + + + 
29 + + + 
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4 Comprehensive performance study on yield misspecification  

4.1 Design 

In this section, we will examine how sensitive decisions are to the selection of the modeling 

approach and ascertain the quality of solutions in situations where the modeling approach has 

been misspecified. We can begin by defining two cases:  

� Case SP comprised the situation in which the yields were assumed to be binomial but in 

fact were stochastically proportional and  

� Case BI occurs when yields are binomial in reality, but were falsely presumed to be 

stochastically proportional.  

In each of these cases, a penalty will result from using the wrong modeling alternative. The 

respective penalties (cost deviations in percent) are given below: 

 
* *

*

( ) ( )
100

( )

SP BI SP SP
SP

SP SP

C Q C Q
C Q

�
� � 	  (2) 

 and  

 
* *

*

( ) ( )
100

( )

BI SP BI BI
BI

BI BI

C Q C Q
C Q

�
� � 	  (3) 

where SPC  and BIC  represent the costs for stochastically proportional and binomial models, 

respectively, and analogously *

SPQ  and *

BIQ  represent optimal decisions of the proportional and 

binomial models, respectively. 

For this study, we rely on a simple product structure for which optimal policies and expected 

costs can be calculated. This simple two core three leaf structure, originally utilized in Inderfurth 

and Langella (2006) is shown in Figure 4. Note that 1 and 2 represent the cores (engine type E1 

and E2) and A, B, and C represent the leaves. We can see that leaves A and C are unique to cores 

1 and 2 respectively while leaf B is common to both cores. This is a simplification worthy of 

some justification. With this relatively simple two core three leaf structure, we can analyze a 

multiple core problem where each core has one unique leaf and share one common leaf. More 

complicated and realistic structures would not allow for an easy calculation of optimal decisions 

necessary for the analysis. Empirically the simplification can be thought of as a situation where 

there is one common part which is expensive or particularly critical for remanufacturing. 
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Figure 4: Product structure of the underlying study 

Under stochastically proportional yield and for the given product structure the cost function 

given in (1) results in  
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Assuming binomial yields the cost function in (1) can be reformulated as 
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For this study, we set the procurement cost for the leaves equal to 10 and disposal costs for 

leaves to zero. We can justify this with the following remarks. The leaf procurement cost is an 
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arbitrary standardization of sorts, following and previous research in Inderfurth and Langella 

(2006) and Langella (2007). With respect to disposal costs, it is often the case that leaves 

obtained from disassembly which are not needed can be recycled for material resulting in a small 

amount of revenue that generally offsets the required handling. 

 

The first factor of experimentation is the profitability of disassembly, defined as the ratio 

between the core cost and the summed procurement cost of the resulting leaves. Here, we have 

chosen three levels: Low (90%), Medium (50%) and High (10%). The next experimental factor 

is the demand symmetry, the relative demands of the leaves. Here we have four levels of 

symmetric demand (called Sdem, with a ratio of 1:2:1 for A, B, and C, since B is contained in 

both cores), common demand (Cdem, ratio of 1:3:1), and unique demand (Udem, 2:1:2) as well 

as level of asymmetric demand (Adem, ratio of 2:2:1 for A, B and C). Next, we explored demand 

level, and we have also chosen three levels here for the demand of the leaf with the smallest 

demand, viz. 5, 10, and 30.  

The last two factors both deal with the yields. First, we explore the average yield rate for SP-

yield, choosing three average levels of 0.5, 0.6, and 0.7. These values correspond to the success 

probability p for BI-yield. Lastly, we examine the role of yield dispersion in case of 

stochastically proportional yield assuming a uniform yield rate distribution and choosing three 

levels for yield rate variance, high, medium and low shown below in Table 3 (with the 

corresponding upper (p+) and lower (p-) bounds): 

Table 3: Lower and upper bounds for the uniformly distributed yield rate in case of SP-yield 

�Z p##  
Hvar  � �0.1732�Z��  Mvar  � �0.1155�Z��  Lvar  � �0.0577�Z��  

p
+
 p

-
  p

+ 
 p

-
  p

+ 
 p

-
 

0.50 0.80 0.20 0.70  0.30  0.60  0.40  

0.60  0.90 0.30 0.80 0.40  0.70  0.50  

0.70  1.00 0.40 0.90 0.50 0.80 0.60 

Since under binomial yield the ordering decision is independent of the yield rate variability these 

lower and upper bounds are not taken into account in the optimal order size determination 

procedure for BI-yield.  



20 

This full factorial design results in a total of 324 possible parameter constellations. For each of 

them we determined the optimal order sizes for each engine type and the corresponding costs in 

dependency of the underlying yield model as well as the costs that result from using the falsely 

presumed order size. These cost parameters are then used to calculate the penalty (using formula 

(2) and (3)) that stems from misspecifying the model. 

4.2 Results 

We will start by examining average and maximum relative cost deviations for each of the two 

cases generally as shown in Table 4. These values represent the average as well as the maximum 

value over 324 parameter constellations for each case. 

Table 4: Average and maximum of cost deviations in percent over all constellations 

 SP�  BI�  

Average cost deviation 0.84 1.37 

Maximum cost deviation 12.32 19.73 

Obviously, the average deviations are only minor while under worst case parameter 

constellations yield misspecification can result in an unacceptable cost increase above optimum. 

Furthermore, as we can see, there are lower averages and maximum deviations for case SP� , 

where binomial yields are falsely presumed. For a more detailed analysis we will now juxtapose 

the respective average und maximum values for some of the specific parameters that have been 

considered in the study. The complete results are given in Appendix Tables A1 and A2 for 

SP� and BI� respectively. We can start with the impact of the profitability of disassembly as 

given in Table 5.  

Table 5: Average and maximum of cost deviations in percent for each case of  

disassembly profitability 

Profitability of 
disassembly Low Medium High 

SP�  
Avg 0.41 0.13 1.98 

Max 3.46 1.01 12.32 

BI�  
Avg 0.37 0.13 3.15 

Max 3.09 2.45 19.73 
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In general, the relative deviations increase with increasing profitability. This can be most 

evidently seen when examining the deviations in the high profitability cases, where maximum 

deviations exceed 10 percent. This effect is quite intuitive since with higher profitability of 

disassembly less parts are procured externally so that along with the increasing importance of 

demand fulfillment from disassembly a misspecification error has a larger impact.  

We can now turn our attention to the impact of demand symmetry using Table 6 below.  

Table 6: Average and maximum of cost deviations in percent  

for each case of demand symmetry 

Demand symmetry Sdem Cdem Udem Adem 

SP�  
Avg 1.65 0.65 0.45 0.93 

Max 12.32 5.86 3.29 3.32 

BI�  
Avg 1.91 0.86 1.04 1.32 

Max 19.73 12.89 11.10 11.21 

From Table 6 we observe that the relative as well as the maximum cost deviations decrease in 

order from symmetric to common to asymmetric to unique for each type of misspecification. 

One can also clearly see here that, different from other demand structures, the penalties for 

symmetric demand are substantial ranging between 10 and 20 percent. Also that the penalties for 

falsely presuming SP yields exceed those of falsely presuming BI yields for all average and 

maximum values in the table for the respective cases. Lastly, we can add that the maximum 

penalties for falsely presuming SP yields exceed 10 percent for each type of demand symmetry. 

The extraordinary high misspecification effect for the Sdem case is surprising since this demand 

structure fits best with the yield expectation from disassembling the same number of core types. 

However, this is just the situation where external procurement caused by a mismatch from core 

disassembly and parts’ demand plays only a minor role so that internal procurement and, in this 

context, misspecification gains importance.  

Next, we can examine the impact of the average yield rate using Table 7 below. Referring to 

Table 7, we can see a clear progression where penalties generally decrease with an increasing 

average yield rate.  
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Table 7: Average and maximum of cost deviations in percent  
for each considered average yield rate 

Average yield rate 0.5 0.6 0.7 

SP�  
Avg 0.96 0.85 0.71 

Max 12.20 12.32 11.05 

BI�  
Avg 1.43 1.25 0.96 

Max 19.73 16.05 14.21 

Also here the penalties for falsely presuming SP yields exceed those of falsely presuming BI 

yields for all average and maximum values in the table for their respective cases. Lastly, in every 

average yield rate setting, the maximum deviation exceeded 10 percent. 

The remaining factors, yield rate variance and demand level, are slightly more challenging to 

interpret. Here, we introduce the following boxplots in Figures 5 and 6 for SP�  and  BI�  

respectively. In each of these figures, high and low variability are in the plots on the left and 

right, and within each plot, demand levels are shown. As one can see, the penalties increase with 

increasing demand level for high yield rate variability but decrease for low yield rate variability 

in both cases of misspecification, both for SP� and BI� . This finding can be interpreted as 

follows. Different from the SP yield case, the yield rate variance in case of BI yield decreases 

with increasing production lot size. Since this lot size is rising with growing demand level the 

variance is relatively high for a demand of 5 and relatively low for a demand of 30 items. For the 

low demand level the BI yield rate variance is nearly of the same magnitude as for high 

variability (Hvar) in the SP case, while for high demand level the BI variance resembles the low 

level (Lvar) of SP yield. It turns out that the penalty is quite low if the yield rate variances in the 

BI and SP case are of similar size while it quickly grows with increasing variance deviations. 

This explains the reverse direction of change of performance for the Hvar and Lvar case in 

Figures 5 and 6 when the demand level increases. From that we see that it might not only be 

important to specify the yield type in a correct manner, but also estimate the yield rate variability 

more or less precisely. 
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Figure 5: Box plots for case SP�  
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Figure 6: Box plots for case BI�  

Examining the entire results tables (see Appendix Table A1 and A2) and counting the relative 

cost deviations that exceeds a given value, we discover that planning the disassembling process 

assuming stochastically proportional yield when yields are actually binomial leads in 24 

parameter constellations to relative cost deviations greater than 5 % and in 2 cases the deviations 

exceed a high percentage rate of 15 % (see Table 8). This is in stark contrast to results for the 
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opposite case when binomial is presumed but yields are proportional, where 9 cases exhibit 

deviations exceeding 5% and no cases show deviations exceeding 15%.  

Table 8: Amount of parameter constellations greater than 5%, 10% or 15% for each case 

Relative cost deviation is 

greater than 

Amount of constellations for case 

SP�  BI�  

5 % 9 24 

10 % 4 9 

15 % 0 2 

Additionally, we can examine cases where one modeling alternative dominates the other, using 

Table 9. As can be seen, in 118 cases the penalty from falsely presuming binomial exceeds the 

penalty of falsely presuming stochastically proportional, where in 142 cases the penalty of 

falsely presuming proportional exceeds that of falsely presuming binomial. As there are 324 

cases in total, in the remaining 69 cases there were equal penalties for either false assumption. In 

order to examine the magnitude of these differences, the table also provides average penalties for 

each group of cases. Here we can see that in the 118 cases where SPBI �$� the difference 

between the penalties was less than 0.4% where in the 142 cases where SPBI �%� the difference 

was above 1.1%. We can draw that not only is it more likely to have SPBI �%� , it is also so that 

when that is the case, the penalties for falsely presuming stochastic proportional yields is 

approximately four times as large as the penalties for the opposite case.  

Table 9: Number of cases and average deviations for cases where  

one modeling approach dominates the other 

 SPBI �$�  BISP �$�  

Number of cases 118 142 

Average SP�  0.948 % 1.130 % 

Average BI�  0.569 % 2.301 % 

Average BISP ���  0.378 % --- 

Average SPBI ���  --- 1.171 % 

Examining the complete results given in the appendix reveals parameter combinations where 

penalties are particularly high or low. Here we observe that the highest deviations occur in case 
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of symmetric demand with a demand level of 30 for the part with the smallest demand 

(30:60:30), high disassembly profitability and for high yield rate variability. The penalty is 

higher also for other demand symmetry cases under the same demand level and profitability 

scenarios, particularly penalties where proportional is falsely presumed. Additionally, cases with 

low demand level, symmetric demand, low yield variation and high profitability also have 

pronounced penalties. In no cases involving medium or low profitability did any penalty exceed 

3% with most cases having marginal penalties. In the following section, we draw implications 

based on these results. 

4.3 Managerial insights 

We can draw some insight from the analysis and provide managers with actionable advice on 

planning remanufacturing operations. First, as we have seen our set of real world data does not 

allow us to specify one modeling alternative or the other. Where some parts studied tend to 

suggest that stochastically proportional yield is more likely, other parts results are inconclusive, 

even within the same core. For practice this means that collection of a sufficiently large amount 

of yield data is necessary and recommendable in order to get a valid picture of the yield type that 

prevails. Considering the results of our numerical experiments, it turns out that a correct 

specification of the true yield type can be very valuable as best evidenced by examining the 

worst case performances. Moreover, also correct estimation of the yield rate variance in case of 

SP yield is of major importance for avoiding excessive penalties. 

 

From our analysis we are also able to give some advice in which cases a correct yield 

specification might be of specific importance. As we have seen from the results, high 

disassembly profit cases tended to have higher penalties, particularly with higher demand levels 

and yield variability, but also for lower demands and lower yield variability under symmetric 

demand. For this reason, in such cases it is worthwhile to exert special effort to test yields to 

determine which modeling alternative is appropriate. Here, the tests we have employed can be 

used to attempt to ascertain which alternative is appropriate.  

 

Furthermore, the results clearly indicate that penalties for falsely presuming proportional yields 

exceed that of falsely presuming binomial yields. In such cases where there is either uncertainty 
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regarding which alternative is appropriate, i.e. it has not been tested, or when such tests fail to 

provide a conclusive result, a wise manager will assume binomial yields since this usually 

provides a better result. 

 

Finally, from our findings we can also give some more insight into the effects of quality testing 

prior to disassembly decisions. While testing certainly can save costs by avoiding unnecessary 

disassembly of bad-quality cores, its effect on misspecification penalties can be ambiguous. If 

we assume that the information from testing results in a higher mean yield rate and lower yield 

rate variance of the cores remaining for disassembly, due to the ambiguous effect of yield rate 

variability for small and high demand levels it might happen that in case of a low demand for 

parts a testing-based decrease in the yield risk results in an increase of the misspecification risk. 

 

 

5. Conclusion and Outlook 

As we have seen, remanufacturing specifically and product recovery management generally fits 

well within the current push towards more sustainability in business. Since remanufacturing 

requires parts to be harvested from returned products, disassembly planning is an important 

component to remanufacturing operations. The yields of disassembly are subject to uncertainty 

since the condition of the returned products varies and disassembly processes are not entirely 

predictable.  

 

There are several alternative methods to model stochastic yields, two of which viz. stochastically 

proportional and binomial, come into question for disassembly planning. Analysis of industrial 

disassembly yield data obtained from an automotive manufacturer failed to yield a conclusive 

result as to which method is applicable. For this reason, we examined the performance of 

disassemble-to-order problems when the yield process is misspecified.  

 

The results from this sensitivity study indicate that decisions are most sensitive for instances 

where the profitability of disassembly is high, particularly when demand level and yield 

variances are high. In these cases, it is especially important to try to ascertain which method is 
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appropriate for the specific products being disassembled. That said, the results may well indicate 

a complicated picture where there is no single dominant method. Our results also generally 

indicate that assuming binomial yields is preferable to presuming proportional yields. For this 

reason, when one is unsure about the method, presuming binomial yields will generally give a 

better chance of obtaining closer to optimal results.  

 

This work can be extended in a couple of directions. First, it would be interesting to see if other 

products yields also result in an inconclusive result with respect to the appropriate modeling 

alternative. This will require industrial yield data from other manufacturers and that that data be 

tested. Second, extending the sensitivity analysis for more complicated problems would also be 

interesting. This will be difficult as more realistic product structures will be computationally 

difficult to analyze. Third, for real-world situations with more than 10 cores, up to 100 parts per 

core and a high level of part communality determining optimal solutions to the disassembly-to-

order problem might be computationally intractable so that heuristic solution procedures are 

necessary. While for stochastic proportional yields powerful disassemble-to-order heuristics are 

available in the literature (see Inderfurth and Langella (2006)), heuristics for binomial yields 

must be developed and tested. Armed with these, managers will be in a better position to plan 

disassembly, even for realistically complex product structures.  
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Appendix 
 

Table A1: Entire penalties for misspecification in case SP�  

 SP�   

   
Hvar Mvar Lvar Z Var 

Dis. 
profit. 

Demand 
symmetry 

Demand 
level 0.5 0.6 0.7 0.5 0.6 0.7 0.5 0.6 0.7 Z Avg 

low 

Sdem 
5 0.00 0.00 0.08 0.32 0.40 0.50 1.55 1.31 0.79  

10 0.46 0.37 0.81 0.00 0.00 0.00 1.07 1.04 0.56  

30 3.46 2.65 1.98 1.15 0.80 0.51 0.00 0.01 0.07  

Cdem 
5 0.00 0.00 0.00 0.37 0.48 0.00 1.34 1.09 0.10  

10 0.52 0.50 0.26 0.00 0.00 0.00 0.48 0.34 0.47  

30 1.49 1.18 0.94 0.52 0.40 0.30 0.00 0.00 0.00  

Udem 
5 0.12 0.16 0.00 0.35 0.42 0.00 0.77 0.76 0.27  

10 0.00 0.00 0.00 0.06 0.02 0.07 0.36 0.26 0.28  

30 0.20 0.15 0.11 0.02 0.02 0.01 0.06 0.06 0.06  

Adem 
5 0.07 0.02 0.00 0.13 0.02 0.12 0.75 0.54 0.58  

10 0.66 0.22 0.51 0.16 0.03 0.13 0.18 0.33 0.13  

30 1.25 0.81 0.81 0.50 0.30 0.34 0.05 0.03 0.04  

medium 

Sdem 
5 0.31 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.00  

10 0.53 0.41 0.05 0.09 0.13 0.00 0.10 0.00 0.00  

30 0.79 0.58 0.26 0.20 0.18 0.06 0.00 0.01 0.00  

Cdem 
5 0.20 0.07 0.00 0.00 0.00 0.00 0.02 0.00 0.00  

10 0.36 0.04 0.15 0.03 0.00 0.04 0.00 0.00 0.00  

30 0.42 0.22 0.13 0.04 0.03 0.03 0.01 0.00 0.00  

Udem 
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

Adem 
5 0.51 0.64 0.56 0.35 0.37 0.26 0.11 0.00 0.00  

10 0.96 0.42 0.59 0.31 0.05 0.19 0.01 0.00 0.00  

30 1.01 0.66 0.42 0.31 0.24 0.14 0.01 0.00 0.00  

high 

Sdem 
5 0.88 0.27 0.42 0.50 0.44 0.00 12.20 12.32 11.05  

10 3.74 3.24 3.63 0.63 0.29 0.00 4.79 6.10 4.88  

30 10.10 9.80 9.01 6.16 4.78 3.67 0.05 0.08 0.16  

Cdem 
5 1.01 0.27 0.00 0.31 0.64 0.00 4.16 4.98 2.80  

10 2.71 1.84 1.54 0.05 0.03 0.24 1.11 1.08 0.41  

30 5.86 4.51 2.90 1.54 1.22 0.99 0.05 0.03 0.00  

Udem 
5 0.17 0.90 1.15 0.00 0.34 0.28 2.24 0.61 0.00  

10 1.11 1.62 2.35 1.02 1.01 1.43 0.00 0.00 0.00  

30 2.28 2.88 3.29 2.67 2.52 2.48 0.73 0.43 0.35  

Adem 
5 0.43 0.70 1.14 0.00 0.23 0.18 2.24 1.87 0.00  

10 1.39 1.60 1.97 0.68 0.79 1.04 0.75 0.20 0.00  

30 3.32 2.96 3.19 2.36 2.13 2.29 0.53 0.29 0.24  
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Table A2: Entire penalties for misspecification in case BI�  

   BI�   

   
Hvar Mvar Lvar Z Var 

Dis. 
profit. 

Demand 
symmetry 

Demand 
level 0.5 0.6 0.7 0.5 0.6 0.7 0.5 0.6 0.7 Z Avg 

low 

Sdem 
5 0.00 0.00 0.01 0.78 1.02 0.31 3.09 1.02 2.09  

10 0.23 0.31 0.19 0.00 0.00 0.00 0.87 0.99 0.78  

30 1.45 1.28 1.23 0.59 0.45 0.49 0.00 0.06 0.02  

Cdem 
5 0.00 0.00 0.00 0.11 0.17 0.00 0.80 1.29 1.31  

10 0.34 0.38 0.26 0.00 0.00 0.00 0.30 0.20 0.16  

30 1.12 0.94 0.86 0.45 0.31 0.30 0.00 0.00 0.00  

Udem 
5 0.05 0.08 0.00 0.05 0.08 0.00 0.39 0.62 0.63  

10 0.00 0.00 0.00 0.03 0.10 0.08 0.15 0.35 0.08  

30 0.22 0.15 0.14 0.04 0.01 0.02 0.05 0.05 0.06  

Adem 
5 0.17 0.08 0.00 0.35 0.40 0.16 1.08 1.52 0.66  

10 0.30 0.21 0.14 0.08 0.05 0.05 0.50 0.51 0.36  

30 0.88 0.70 0.57 0.29 0.23 0.21 0.09 0.10 0.05  

medium 

Sdem 
5 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

10 1.24 0.61 0.53 0.14 0.03 0.00 0.00 0.00 0.00  

30 2.45 1.13 0.63 0.44 0.24 0.07 0.03 0.01 0.00  

Cdem 
5 0.13 0.16 0.00 0.00 0.00 0.00 0.06 0.00 0.00  

10 0.31 0.14 0.01 0.02 0.00 0.01 0.02 0.00 0.17  

30 0.23 0.07 0.02 0.02 0.01 0.00 0.03 0.00 0.00  

Udem 
5 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00  

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

Adem 
5 0.79 0.07 0.25 0.24 0.25 0.25 0.08 0.00 0.25  

10 0.69 0.31 0.16 0.15 0.09 0.01 0.09 0.00 0.14  

30 0.48 0.14 0.04 0.09 0.02 0.00 0.09 0.00 0.00  

high 

Sdem 
5 1.16 0.91 1.02 0.28 1.02 0.00 8.83 14.56 6.55  

10 6.98 4.98 4.64 0.59 0.21 0.52 3.24 2.39 2.32  

30 19.73 16.05 14.21 8.41 6.42 4.75 0.00 0.01 0.10  

Cdem 
5 2.25 0.74 0.00 0.26 0.07 0.00 3.08 3.89 0.97  

10 5.82 3.81 1.66 0.20 0.24 0.07 0.81 0.68 0.59  

30 12.89 8.31 5.64 2.63 2.31 1.92 0.08 0.02 0.00  

Udem 
5 0.86 1.99 0.68 0.00 0.32 0.68 1.20 1.45 0.00  

10 3.74 3.77 4.88 2.48 2.21 1.11 0.00 0.00 0.00  

30 10.49 10.92 11.10 7.69 6.64 5.99 0.94 0.67 0.52  

Adem 
5 0.59 1.25 0.52 0.00 0.18 0.42 1.83 2.03 0.00  

10 4.21 3.15 3.42 1.61 1.55 0.96 0.42 0.51 0.00  

30 11.21 9.46 9.46 6.38 5.30 4.98 0.63 0.44 0.38  
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