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Abstract

This paper deals with a special vehicle routing problem with backhauls where

each customer receives items from a depot and, at the same time, returns items back

to the depot. Moreover, time windows are assumed and three-dimensional loading

constraints are to be observed, i.e. the items are three-dimensional boxes and pack-

ing constraints, e.g. regarding load stability, are to be met. The resulting problem

is the vehicle routing problem with simultaneous delivery and pickup (VRPSDP),

time windows, and three-dimensional loading constraints (3L-VRPSDPTW). This

problem occurs, for example, if retail stores are supplied by a central warehouse and

wish to return packaging material.

A particular challenge of the problem is to transport delivery and pickup items

simultaneously on the same vehicle. In order to avoid any reloading effort during a

tour, we consider two different loading approaches of vehicles: (i) loading from the

back side with separation of the loading space into a delivery section and a pickup

section and (ii) loading at the long side.

A hybrid algorithm is proposed for the 3L-VRPSDPTW consisting of an adaptive

large neighbourhood search for the routing and different packing heuristics for the

loading part of the problem. Extensive numerical experiments are conducted with

VRPSDP instances from the literature and newly generated instances for the 3L-

VRPSDPTW.
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1 Introduction

Retail stores usually receive their supplies from a central warehouse. Trucks start from

the warehouse and deliver the requested articles to several outlets before they return to

the warehouse again. This gives rise to various vehicle routing problems (VRPs), for

example, variants which include backhauling, i.e. the return transportation of goods from

the customers to the depot. This allows for organizing transportation more economically

and more environmentally friendly. By increasing the capacity utilization of the trucks in

use, it reduces the number of trips and the respective travel distances which are necessary

to satisfy all transportation requests.

Whereas different variants of backhauling can be distinguished (cf. e.g. [35, 22]), we

consider a specific one called VRP with simultaneous delivery and pickup (VRPSDP)

where each client is assigned with linehaul (delivery) and backhaul (pickup) demands and

is serviced by exactly one vehicle. This situation occurs, for example, when fresh-food

supermarkets are provided with articles in cooling boxes or in the clothing sector where

clothes are delivered to the shops in cardboard boxes. In both cases, the boxes have

to be returned to the warehouse. Further applications include the delivery of household

appliances and furniture and the pickup of bulky waste like defective electronic devices or

damaged furniture. The transportation of automotive parts constitutes another example.

Suppliers deliver components to original equipment manufacturers and pickup finished

products from them in return.

In order to provide a more realistic modelling of the problem, we consider time windows

for the customers and the depot. Furthermore, since the transported goods and/or the re-

spective packaging materials are usually of a size that cannot be neglected when the trucks

are being loaded, the goods are explicitly assumed to be three-dimensional (cuboid) items.

That way, their spatial dimensions are taken into account in order to generate feasible

loading plans that consider practically relevant packing constraints and can guarantee the

feasibility of routes. A particular challenge of the problem is to transport delivery and

pickup items simultaneously on the same vehicle. In order to avoid any reloading effort

during a tour, we consider two different loading approaches of vehicles: (i) loading from

the back side with separation of the loading space into a delivery section and a pickup

section and (ii) loading at the long side. The resulting problem belongs to the group

of vehicle routing problems with three-dimensional loading constraints (3L-VRPs) which
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was introduced in [17].

We propose a hybrid algorithm for solving the three-dimensional VRPSDP. It consists of

an adaptive large neighbourhood search (ALNS) which is based on an approach presented

in [39] and which is extended by various operators. The ALNS is combined with conven-

tional packing heuristics to ensure the feasibility of the obtained solutions with respect

to the packing subproblem.

The remainder of this paper is organized as follows: In Section 2, the considered problem

is described in detail. The relevant literature is discussed in Section 3. Followingly, the

ALNS approach and the used packing heuristics are presented in Section 4. Section 5

contains the description, results and analysis of the numerical experiments. Finally, in

Section 6, the paper concludes with a summary and an outlook to future research.

2 Problem description

Let G = (N,E) be a weighted, undirected graph consisting of a node set N = {0, 1, . . . , n}
which represents the depot ({0}), i.e. the warehouse, and n customers ({1, . . . , n}), and
an edge set E = {(i, j) : i, j ∈ N}. A cost cij (cij ≥ 0) is assigned to each edge

(i, j) ∈ E (i �= j). Moreover, time windows are considered. That is, a ready time RTi, a

due date DDi, and a service time STi are assigned to each location i (i ∈ N). If a vehicle

arrives at a customer location before the customer’s ready time, the service cannot start

until the ready time, i.e. the vehicle has to wait. On the other hand, a vehicle must

not arrive after the due date of a customer or the depot, respectively. Each customer

i ∈ N \ {0} demands a set ILi = {1, . . . ,mL
i } of mL

i linehaul items from the depot and

returns a set IBi = {mL
i +1, . . . ,mL

i +mB
i } of mB

i backhaul items to the depot. Each item

Iik (i = 1, . . . , n; k = 1, . . . ,mL
i +mB

i ) has a known length lik, width wik, height hik and

weight dik, and is assigned with a fragility flag fik indicating whether it is fragile (fik = 1)

or not (fik = 0). A fleet of vmax identical vehicles is available. Each vehicle can carry a

maximum weight D and has a loading space with a given length L, width W and height

H.

A feasible packing plan P comprises information about the placement for one or more

items and fulfils the following conditions: (P1) all items are placed entirely within the

loading space, (P2) any two items that are simultaneously in one vehicle must not overlap,

(P3) all items must be placed orthogonally to the loading space edges. Moreover, the
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following additional packing constraints must be adhered to:

(PC1) Fixed vertical orientation: Each item has a fixed vertical orientation, i.e. the

height dimension is fixed. The items can be turned by 90◦ on the horizontal plane,

though.

(PC2) Vertical stability: Each item must be supported by a given percentage α by the

top face of other items or the container floor.

(PC3) Fragility: The items are divided into fragile and non-fragile items. Whereas

fragile items can be placed on top of any other item, non-fragile items can only be

placed on top of other non-fragile items.

(PC4) LIFO: In order to load and unload the items solely by straight movements towards

the door, the items must be arranged in a way that the loading and unloading at

a certain station is not blocked by items that are to be delivered later or have

already been picked up. That is, linehaul and backhaul items must not be placed

in front or on top of each other. Moreover, a linehaul item that is delivered later

must not be placed in front or on top of a linehaul item that is delivered earlier,

and analogously for backhaul items.

It is further assumed that any reloading during the tour is forbidden. Therefore, the LIFO

constraint is particularly challenging when a backhaul variant is considered where linehaul

and backhaul items are transported simultaneously. Two different loading approaches are

used here which allow for arranging the items in a way that reloading can be avoided.

Firstly, double-decker vehicles are considered. These vehicles are rear-loaded and their

loading space can be separated horizontally, so that linehaul and backhaul items can

be transported in separate compartments. It is assumed here that both compartments

are of identical size. Hence, a mixture of linehaul and backhaul items does not need be

considered with respect to the LIFO policy. In the second variant, so-called tautliners are

used. This kind of vehicle is not loaded from the rear but can be loaded (and unloaded)

from one long side. The principle is depicted in Fig. 1. By loading linehaul (light grey)

and backhaul (dark) items from the opposing sites of the loading space, the unloading

of linehaul items generates spaces for backhaul items. At a given stage of a tour, LLH

represents the loading length (i.e. the maximum front edge) of all linehaul items currently

in the vehicle. Analogously, LBH represents the length needed for the backhaul items. The
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sum of both lengths must not exceed the length of the loading space L in order to avoid

the overlapping of any two items during the tour. Furthermore, the LIFO constraint is

adjusted for this loading approach. It must not only be considered along the length but

also along the width axis. In the example in Fig. 1, item 4 cannot be delivered later

than item 1 (LIFO along length axis). Although the items are not unloaded along the

length axis in this case, this aspect of the LIFO constraints ensures that the unloading

of linehaul items successively creates space for backhaul items. Moreover, items 2 and 3

must not be delivered after item 1 either, because they would block the unloading of item

1 (LIFO along width axis).

1

7

53

6

LLH LBH

2

4
Unloading 

direction

Figure 1: Side loading

Furthermore, a route R is defined as a sequence of locations (0, i1, . . . , inr , 0) which is

feasible if (R1) it starts and ends at the depot, (R2) it contains each customer i ∈ R \{0}
exactly once, (R3) the vehicle does not arrive after the due date DDi of any location

i ∈ R and (R4) the sum of the weights of all items transported simultaneously does not

exceed the vehicle capacity D. Each route R must be provided with two packing plans:

one for all linehaul items at the beginning of the tour (PL) and one for all backhaul items

at the end of the tour (PB). It is assumed that each vehicle travels only one tour. Let

v be the number of used vehicles in a solution. Thus, a solution consists of a set of

v triples (Rt, Pt,L, Pt,B) containing a route Rt for each vehicle t (t = 1, . . . , v) and the

corresponding packing plans Pt,L and Pt,B. A solution is feasible if (S1) all routes Rt

and packing plans Pt,L, Pt,B (t = 1, . . . , v) are feasible, (S2) each packing plan Pt,L, Pt,B

contains all of the respective linehaul or backhaul items (and no other) of all customers

serviced in Rt (t = 1, . . . , v), (S3) each customer i ∈ N \ {0} is assigned to exactly one

route, (S4) the number of used vehicles v does not exceed the number of available vehicles

5



vmax. Moreover, a feasible solution for the problem under application of the side loading

approach must also fulfil the condition (S5) that the linehaul and backhaul items that are

transported simultaneously on a route Rt (t = 1, . . . , v) do not overlap.

A feasible solution is to be found that minimizes the total travel distance (TTD). The

problem can be classified as a 3L-VRP with simultaneous delivery and pickup and time

windows (3L-VRPSDPTW). By replacing the sets of three-dimensional items by one-

dimensional demands, and the loading space of a vehicle by a one-dimensional capacity

and by omitting the packing constraints, the 3L-VRPSDPTW will be reduced to the

one-dimensional VRPSDPTW and to the VRPSDP if time windows are not considered

either.

3 Literature review

In the following section, an overview of the relevant literature is given. Since there is – to

the best of our knowledge – no scientific publication yet dealing with the 3L-VRPSDPTW

the focus will be on the (one-dimensional) VRPSDP and variants of the 3L-VRP as a group

of related problems.

3.1 Vehicle routing problem with simultaneous delivery and

pickup

Initially, classical heuristic methods were proposed in the first place for solving the

VRPSDP. E.g., cluster-first-route-second approaches were presented in [32] and [19]. In-

sertion heuristics were proposed in [41] and [12]. Later, the focus shifted towards meta-

heuristic solution approaches. A hybrid procedure consisting of tabu search (TS) and

variable neighbourhood descent is proposed in [9]. Another TS algorithm was presented

in [48]. ALNS for a large variety of vehicle routing problems, among them the VRPSDP,

was proposed in [39]. For a detailed review of the literature regarding the VRPSDP until

2008 we refer to [35].

More recently, various metaheuristics were developed for the problem. Reactive TS al-

gorithms in which the length of the tabu list is adapted dynamically during the search

process were proposed in [56, 57]. Hybrid algorithms were presented in [60] (TS and

guided local search), in [45] (variable neighbourhood search (VNS) and iterated local
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search), and in [2] (local search (LS) and TS). Further approaches included, among oth-

ers, ant colony optimization (ACO) [7], scatter search [30, 62], genetic algorithm (GA)

[51, 62], evolutionary algorithm [15], or VNS [36].

In addition, approaches for the VRPSDP with time windows have been designed as well.

[13] proposed a TS algorithm for identifying solutions that minimize the total travel dis-

tance and maximize customer satisfaction. [54] and [53] aimed at minimizing the number

of used vehicles and the total travel distance by applying a GA and a simulated annealing

approach, respectively. [63] tackled the problem with a hybrid algorithm integrating ACO

and TS.

Moreover, several exact methods have been proposed as well for the VRPSDP. They

include, for example, branch-and-price approaches [1, 10], branch-and-cut [46], or branch-

and-cut-and-price [47]. Furthermore, [38] proposed an efficient MILP formulation with

valid inequalities which is solved by using a standard LP/IP code (CPLEX).

3.2 Vehicle routing problem with three-dimensional loading con-

straints

The capacitated vehicle routing problem with three-dimensional loading constraints (3L-

CVRP) including the above mentioned packing constraints was first presented in [17].

Subsequently, the problem was studied by various researchers (e.g. [50, 14, 5]). In addi-

tion, also variants of the problem have been studied. For example, the 3L-CVRP with

time windows and the minimization of the number of vehicles were considered in [33] and

[34]. The 3L-CVRP with a heterogeneous vehicle fleet was studied in [58].

Usually, a metaheuristic approach is applied to the routing subproblem, e.g., GA [33, 31],

TS [17, 50, 55, 28, 59, 65, 49], or ACO [14]. On the other hand, the packing problem

is usually tackled by rather simple heuristics because solving the packing problem is,

in general, computationally expensive. The application of such heuristics, which are

often based on deepest-bottom-left or touching area approaches, may result in low-quality

solutions, though. More complex packing heuristics, e.g. those proposed in [64] (LS-

based approach) or in [5] (tree search), have been applied as well and provided significant

improvements of the best known solutions of benchmark instances.

As mentioned above, the 3L-VRPSDP has not been studied in the literature, yet. Only

few variants of the VRP with backhauls have been considered in combination with three-
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dimensional loading constraints so far. A 3L-VRP with clustered backhauls was dealt with

in [6]. In this problem, the customers are either pure linehaul or pure backhaul customers

and within one tour the linehaul customers must be visited before the backhaul customers.

The authors applied an ALNS and a VNS to the routing and a tree search procedure to

the packing problem. Moreover, the pickup and delivery problem with three-dimensional

loading constraints was presented and solved in [4] and [29]. In this problem variant,

goods are not transported between the depot and the customers, but from loading to

unloading locations. A detailed overview of the developments in the literature regarding

the 3L-VRP is provided in [37].

4 A hybrid solution approach

Both the VRP and the packing problem are NP-hard optimization problems. The 3L-

VRPSDPTW, as a combination of both problems, is even more challenging and very

difficult to solve (cf. e.g. [21]). Therefore, we propose a hybrid solution approach to the

3L-VRPSDPTW, consisting of a metaheuristic – more precisely an ALNS algorithm – for

the routing subproblem and conventional packing heuristics for the packing problem.

4.1 Adaptive large neighbourhood search

Our ALNS is based on an approach presented in [39, 40]. The large neighbourhood

search was originally proposed in [42, 43] for the CVRP and the VRPTW. The general

framework is depicted in Fig. 2. In the first step of each iteration of the algorithm,

customers are removed from the current solution by a removal heuristic. Then, these

customers are reinserted by making use of an insertion heuristic. Different removal and

insertion heuristics are available. In each iteration, the applied heuristics are selected

randomly based on a roulette wheel selection principle and the number of customers to

be removed is determined randomly within a given interval. The acceptance check of a

new solution (line 8) is embedded in a simulated annealing framework. In the following,

the different components of the algorithm are described in detail.

Initial solution

The savings heuristic [8] is used for the generation of the initial solution. This heuristic,

however, does not include any means for controlling the number of tours. Thus, its
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1: procedure ALNS(in: instance data, parameters, out: best solution sbest)
2: construct initial solution sinit
3: s := sbest := sinit
4: while stopping criterion is not met do
5: select number of customers to be removed nrem ∈ [nomin, nomax]
6: select removal heuristic rem heur and insertion heuristic ins heur
7: determine next solution snext := ins heur(rem heur(s, nrem))
8: check acceptance of snext
9: if snext is accepted then

10: s := snext
11: if f(s) < f(sbest) then sbest := s end if
12: end if
13: if segment end is reached then � segment: pre-defined number of iterations
14: update weights of insertion and removal heuristics
15: end if
16: end while
17: end procedure

Figure 2: Adaptive large neighbourhood search

application may result in more than vmax tours.

Penalization of the objective function value

In order to guide the search towards feasible solutions, penalty terms are applied. These

terms aim (i) at reducing the number of used vehicles to at most vmax vehicles and (ii)

at including all customers in the solution. Compliance with the constraints described in

Section 2 is, in general, ensured within the algorithm. However, due to the initial solution

procedure, solutions with more than vmax vehicles may occur and reinserting removed

customers into the solution again may not be possible. The objective function value f of a

solution s can then be determined as: f(s) = f ∗(s)+penv ·max(0, vused−vmax)+penmc·nmc.

Here, f ∗(s) provides the actual objective function value of s (total travel distance), penv

and penmc represent the penalty terms, vused and nmc indicate the number of vehicles used

in the solution and the number of missing customers, respectively.

Removal heuristics

Whereas only one removal heuristic was used in [42, 43], three different heuristics were

used in [40] and five in [39]. Further removal heuristics were, e.g., presented in [11]. [39]

observed that the implementation of a larger number of heuristics results in better so-

lutions. Therefore, we decided to equip the algorithm with a large number of heuristics
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while the adaptive mechanism of the ALNS provides the selection of the best performing

heuristics. In total, 21 removal heuristics have been implemented which are described in

Table 1. As can be seen, most of them originate from the literature, to which we refer for

more details. In addition, some new operators have been developed and some have been

modified. Below they will be described in greater detail.

Table 1: Removal heuristics
Name Description Ref.

Shaw removal Removes customers that are related w.r.t. distance,
demand, time windows.

[42]

Random removal Removes random customers. [40]
Worst removal Removes customers that deteriorate the solution cost the

most.
[40]

Cluster removal Partitions a tour into two clusters and randomly removes
one of the clusters.

[39]

Tour removal Removes an entire randomly chosen tour. [6]
Worst distance removal Removes customers with high distances from their

respective predecessor and successor.
[11]

Worst time removal Removes customers with large differences between their
ready time and the start of service.

[11]

Proximity-based Shaw
removal

Removes customers that are related w.r.t. distance. [11]

Time-based Shaw removal Removes customers that are related w.r.t. time windows. [11]
Demand-based Shaw removal Removes customers that are related w.r.t. demand. [11]
Neighbour graph removal Is based on historical information regarding the best

solution found so far in which a certain customer is visited
before another customer.

[39]

Historical knowledge removal Is based on historical information regarding the best
position found so far for each customer.

[11]

Neighbourhood removal Removes customers which deteriorate the average distance
of a tour.

[11]

Node neighbourhood
removal

Removes customers close to a randomly chosen customer. [11]

Overlap removal Removes customers that lead to the intersection of two
tours.

New

Inner tour removal Removes a tour that is completely surrounded by another
and splits the surrounding tour into two.

New

Intersection removal Removes customers that lead to intersections within a tour. New
Tour pair removal Removes two tours that are intersecting. New
Least customer-tour removal Removes the tour with least number of customers. New
Largest distance-tour
removal

Removes the tour with largest total distance. New

Average distance-tour
removal

Removes the tour with largest average distance. New

Shaw removal: The Shaw removal heuristic aims at removing “related” customers from a

solution. For the definition of the “relatedness” of two customers i and j, their distance

(cij), their ready times (RTi, RTj) and their demand volumes are taken into account. Let

netvoli be the net demand volume of customer i, i.e. the difference between its delivery
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and pickup demand volume:

netvoli =

mL
i∑

k=1

(lik · wik · hik)−
mL

i +mB
i∑

k=mL
i +1

(lik · wik · hik).

Thus, the net demand volume is greater than zero if the volume of the delivery goods is

larger than the volume of the pickup goods, less than zero if the pickup volume exceeds

the delivery volume, and equals zero if both volumes are equal. We also consider whether

the customers are assigned to the same tour. Let stij = −1, if customer i and j are

in the same tour, and stij = 1 otherwise [11]. The relatedness measure relateij for two

customers i and j (i, j ∈ N \ {0}) can then be determined as follows:

relateij = ω1 · c∗ij + ω2 · |RT ∗
i −RT ∗

j |+ ω3 · |netvol∗i − netvol∗j |+ ω4 · stij.

Here, ω1, ω2, ω3, and ω4 represent given weights for the different components. Moreover,

the distances, ready times and net demands are normalized in the interval [0,1] which

is indicated by the asterisk in the equation above. The smaller the relatedness measure

between two customer is, the more related they are. The heuristic randomly selects one

customer from the solution and removes another related customer until nrem customers

are removed. A determinism parameter p (p ≥ 1) introduces some randomness so that

not necessarily the customer with the highest relatedness value is removed. The higher

the value of this parameter is, the smaller is the randomness. See [40] for further details

regarding the procedure and the determinism parameter. This parameter is also applied

in other removal heuristics that contain sortings of customers.

Overlap removal: This operator aims at removing intersections between tours. Intersec-

tions are determined in the following way: For each tour a rectangle is computed based on

the minimum and maximum x- and y-coordinates of the customer locations within this

tour. If the rectangles of two tours overlap, it is further tested whether two edges of the

tours intersect. An example is illustrated in Fig. 3. The gray-shaded area represents the

overlapping rectangles. Within this area, the edges (3,4) and (8,9) intersect. Thus, also

the respective tours intersect.

First, all intersecting pairs of tours are identified as described above. Then, one pair

is randomly selected and customers in the overlap area are removed from the solution.
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This procedure is repeated until nrem customers have been removed. If fewer than nrem

customers could be determined in that way, further customers are randomly selected and

removed.

1

2

3

4

5
6

7

8

9

10

11

Figure 3: Overlap removal

Inner tour removal: This operator does not only remove customers from a solution, but

it also breaks up tours. First, it is checked whether there are tours that are completely

surrounded by another tour, as depicted in Fig. 4. This is done by determining the outer

rectangle for each tour as above. If one of these rectangles lies completely within another

one, the respective tour must be surrounded. The inner tour is then removed from the

current solution. The other tour is divided into two tours, each of which receiving half

the number of customers if the number of customers nt in the tour is even. Otherwise,

the first �nt

2
� customers and the last �nt

2
	 customers form the two new tours.

1

2
3

4

5

6

7

8

9

10

1

2
3

4

5

6

7

8

9

10

(a) (b)

Figure 4: Inner tour removal; a) solution before and b) after Inner tour removal

Intersection removal: The Intersection removal operator checks whether two edges within

12



a tour intersect. In this case, the four customers (except for the depot) which form these

edges are removed. An example is illustrated in Fig. 5. Here, the customers 2, 3, 5, and

6 would be removed.

1

4

2

3

6

5

Figure 5: Intersection removal

Tour pair removal: First, intersecting tour pairs are determined as in the Overlap removal

heuristic. The operator removes a randomly selected intersecting tour pair from the so-

lution.

Tour removal variants: Unlike using a single random Tour removal operator as the one

presented in [6], three additional variants are considered here. In the first one, the tour

with the least number of customers is removed. Secondly, the longest tour is removed.

Finally, in the third variant, the tour with the largest average distance between the

customers in the tour and their corresponding successors is removed.

Insertion heuristics

The insertion heuristics have been adopted from [40]. The first heuristic is a basic Greedy

procedure. In each iteration of the insertion process, the insertion costs are determined

for each unassigned customer (who is not assigned to any tour in the solution) at every

possible position in every tour. The customer who leads to the least increase in the

travel distance is inserted into the solution at the respective minimum-cost position. Only

feasible insertions are considered, i.e. time window, capacity and packing constraints must

not be violated. This procedure is repeated until all customers have been inserted or no

remaining unassigned customer can be inserted. Furthermore, two less myopic Regret-k

heuristics have been implemented which take the k best insertions into account. Here, the

Regret-2 and Regret-3 heuristic are used. In each iteration, the customer with the highest

regret value is inserted. The regret value is given by the difference between the cost of
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the best and the second best insertion (Regret-2), assumed that these insertions are made

in different tours. Analogously, in the case of the Regret-3 heuristic, the regret value is

defined by the difference between the cost of the best and the second best insertion plus

the difference between the cost of the best and the third best insertion.

In addition, we also consider these heuristics in a randomized way in order to increase the

diversification within the search. In these variants, a noise factor is added to the objective

function value when calculating the insertion costs. The noise factor is randomly chosen

from the interval [−η · cmax, η · cmax], where η is a noise parameter and cmax = maxi,j∈N cij

(see [40] for further details).

A customer who cannot be inserted into any route, remains on the list of “missing” cus-

tomers and causes a penalization of the objective function value (see above). Variants with

and without noise are looked upon as different heuristics. Hence, six different insertion

heuristics have been implemented.

Acceptance check

As mentioned above, a simulated annealing approach is applied. The newly generated

solution snext is always accepted if it is better than the current solution s. In that case

it is also checked whether the best solution found so far could be improved. If snext is

worse than the current solution, it is accepted with the probability e−(f∗(snext)−f∗(s))/T

where T is the current temperature (T > 0). The value of the starting temperature for

the first iteration is determined in such a way that a solution that is w% worse than the

initial solution would be accepted with a probability of 0.5. w is a pre-specified parameter

for controlling the start temperature (cf. [40]). After each iteration, the temperature is

decreased according to a cooling rate γ (0 < γ < 1) : T := T · γ.

Heuristic selection and weight adjustment

As in [40], the heuristics are selected based on a roulette wheel selection principle, i.e.

their selection probabilities depend on their weights. Initially, all weights are set to 1.

For the weight adjustment, a score and a counter are needed for each heuristic. Both are

set to 0 at the beginning of each segment which lasts for a given number of iterations. In

each iteration in which a heuristic was used, its counter is increased by 1. The score is

increased by one of the following values:

• σ1, if the remove-insert operation led to a new globally best solution,
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• σ2, if the remove-insert operation improved the current solution,

• σ3, if the remove-insert operation led to a solution that is worse than the current

solution but has not been accepted before or is as good as the current solution.

Note that updating of the score is slightly different to the approach in [40]. Unlike in [40],

where σ2 is only added to the score if the new solution improved the current solution and

has not been accepted before, improvements of the current solution are always rewarded

here. Moreover, the addition of σ3 for solutions equally good as the current solution

represents another modification.

At the end of each segment the weights of the heuristics are recalculated. Let Ωhj be the

weight of heuristic h in segment j. Taking into account the current score and counter of

the heuristic h, its weight in the following segment j + 1 is calculated as follows:

Ωh,j+1 = Ωhj · (1− r) + r · scoreh
counth

.

r is a reaction parameter controlling the impact of the recent performance of the heuristics.

Stopping criteria

The algorithm stops after a given number of iterations itermax or if no further improvement

was found after a given number of iterations iterno impr. In addition, a time limit tmax is

used because some instance characteristics may lead to high computing times (see below).

4.2 Packing heuristics

Different packing heuristics have been integrated into the ALNS including simple con-

struction heuristics and more complex local search (LS)-based approaches.

Construction heuristics

This group consists of comparatively simple heuristics. It includes the implementation of a

deepest-bottom-left-fill (DBLF) heuristic for the three-dimensional packing problem which

was presented in [25]. This procedure was based on the approach for the two-dimensional

case (bottom-left (BL)) which was proposed in [3] and [20]. Initially, the items are sorted

with respect to the customer sequence of a given tour. That is, the linehaul items of
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Figure 6: Comparison between BLF- and BL-approach: (a) BLF [20], (b) BL [23, 26]

the customers who are visited last are loaded into vehicle first. Loading for backhaul

items follows an analogous rule. Ties are broken by the item fragility (non-fragile items

first), breaking ties by non-increasing volume, breaking ties by non-increasing length

and breaking ties by non-increasing width. Based on the resulting item sequence, the

items are packed into the loading space where they are placed according to the following

priorities: as far as possible (1) to the back, (2) to the bottom, and (3) to the left.

In earlier implementations of the BL procedure, a sliding technique is used (e.g. in

[23, 26]): The starting position of an item is the right upper edge. From there it is moved

alternately as far as possible to the bottom and to the left. On the contrary, the DBLF

approach applied here scans all positions that are available for placement (with both item

orientations). These positions are sorted based on the placement priorities mentioned

above. A comparison of both approaches is illustrated in Fig. 6 (for the two-dimensional

packing problem). In Fig. 6(a) the available positions are numbered according to the

bottom left-sequence. They are tested successively until a feasible placement is found.

Since it is possible to fill the gaps created by other items (by placing the item in position 1

in the depicted example) the approach is called (deepest-)bottom-left-fill. Note that this

may not be possible with the sliding technique (Fig. 6(b)). Moreover, a variant, called

DBLF (stable), was implemented. In this variant, an item that has not been placed DBL-

stably – i.e. as far as possible to the back, to the bottom, and to the left – is further

moved towards such a position.

As a second construction heuristic, a touching area (TA) heuristic has been implemented
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which is based on an approach first presented in [27] for the two-dimensional bin packing

problem. The first item is placed in the deepest bottom-left corner of the loading space.

All further items are placed in positions that maximize the touching area, i.e. the per-

centage of the item surfaces that touch previously placed items or the container walls. In

contrast to the DBLF-algorithm, searching for a position does not stop as soon as one

feasible position is found, but all potential positions and all possible orientations are eval-

uated. In addition, a variant that does not consider the container walls was implemented.

Local search and open space heuristic

This procedure was presented in [64] and is a LS-based approach. Two cases have to be

distinguished: In the first case, the number of items to be packed is smaller than or equal

to a given value (the authors propose 8). Then, all permutations of the item sequence are

packed until one is identified in which the items could be packed feasibly or all have been

tested. Packing is performed by an open space-based heuristic. We refer to [64] for further

details. In the second case in which the number of items to be packed is larger than the

given value, a procedure is applied which is illustrated in Fig. 7. Different item sequences

are obtained by randomly swapping two items within the sequence. In contrast to the

first case, only a limited number of permutations (which equals the number of items in

the tour nitems) is tested here. The procedure OpenSpaceHeuristic returns the number of

items that could be packed feasibly (p). The procedure terminates when all nitems items

could be packed (cf. lines 6, 15) or when the number of iterations is exceeded (cf. lines

8, 20). Two different sorting rules are applied (line 2). In the first sorting rule, the items

are sorted lexicographically based on the customer sequence in the tour, by fragility, by

non-increasing base area, and finally by non-increasing volume. The second sorting rule

is very similar. Merely, the length of the items is used as the third component instead of

the base area.

Local search and construction heuristics

Finally, we also integrated the above-mentioned construction heuristics into the LS ap-

proach. That is, instead of the open space heuristic, a DBLF- or TA-heuristic is applied to

the different item sequences within the LS. Moreover, the sorting rule which is described

in the paragraph Construction heuristics is used.

17



1: procedure local search pack
2: for each sorting rule do
3: I = sorted sequence of all items demanded by the customers in the route
4: p := OpenSpaceHeuristic(I)
5: if p = nitems then � all nitems of the tour could be packed
6: return true
7: else
8: for k = 1 to nitems do
9: generate a new sequ. I∗ by swapping two randomly selected items in I
10: p∗ := OpenSpaceHeuristic(I∗)
11: if p∗ ≥ p then
12: I := I∗, p∗ := p
13: end if
14: if p = nitems then
15: return true
16: end if
17: end for
18: end if
19: end for
20: return false
21: end procedure

Figure 7: LS-based packing procedure (case 2) [64]

In conclusion, the following nine packing heuristics are available:

• Firstly, each of the four construction heuristics – DBLF, DBLF (stable), TA-Walls,

and TA-noWalls – can be applied individually.

• Moreover, each of these heuristics can be integrated into the LS framework.

• In addition, the LS procedure with the open space heuristic is also available.

In the hybrid solution approach, the ALNS can be combined with each of the packing

heuristics. The following section describes the components of the ALNS into which a

packing heuristic is integrated.

4.3 Integration of routing and packing

The packing procedure is applied in order to check whether (partial) routes that have

been generated can be packed feasibly. This contains two aspects: On the one hand,

the procedure determines two packing plans – one for the linehaul items and one for the

backhaul items of a tour. On the other hand, in the case of the side loading approach, it

tests whether linehaul and backhaul items would overlap at any stop of the route according

to the generated packing plans. As these procedures are computationally expensive –

about 95 % of the computation time of the hybrid routing and packing solution approach
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is needed for packing – calling them as rarely as possible is desired. Packing checks

are done in connection with the insertion heuristics and with the identification of a new

globally best solution.

In order to highlight the usage of the packing procedure within the insertion heuristics,

a general insertion procedure is described here (see Fig. 8). This procedure includes all

insertion heuristics described above. By choosing the value k = 1 for the input parameter

k, the Greedy insertion is called; for k = 2 or k = 3 if the respective Regret-k-heuristic is

applied.

The set U comprises all customers that are not assigned to any tour in the temporary

solution snext, i.e. customers that have been removed in the current iteration or were not

assigned to any tour before the current iteration. Initially, for each unassigned customer

i ∈ U , the best feasible insertion for each tour is determined (lines 5-14). This is done

by calling the procedure select ins for each tour and accumulating the best insertions

in the sets Ii (i ∈ U). The insertions of the unassigned customers are then sorted by

non-decreasing insertion costs. In the next part (lines 15-37), the unassigned customers

are successively inserted into the solution based on the insertion criteria of the respective

heuristic. After an insertion was performed, the best insertions of the remaining customers

in U into the tour, which was altered by the insertion, are updated (line 31). Again, the

procedure select ins is called for this purpose. The insertion procedure ends when all

unassigned customers have been inserted or no more customers can be inserted into any

tour.

The packing procedure can be viewed as part of the procedure select ins which is outlined

in Fig. 9. Only feasible insertions can be returned by the procedure. However, not all

potential insertions are checked in detail for feasibility. First of all, only those tours are

considered into which the customer can be inserted without exceeding the vehicle weight

capacity by all linehaul items (at the beginning of the tour) and all backhaul items (at the

end of the tour) (line 3). Here, dLt (d
B
t ) represents the total weight of all linehaul (backhaul)

items in tour t and dLi (dBi ) represents the total weight of all linehaul (backhaul) items of

customer i. The potential insertions into a tour are then sorted by non-decreasing insertion

costs and successively tested for feasibility until a feasible insertion was identified or all

potential insertions were tested unsuccessfully. Within these tests, the resulting routes are

firstly tested with respect to the weight capacity and time window constraints at every

stop of the tour. If these are satisfied, the packing procedure is called (line 15). The
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procedure stops after a feasible insertion was found (line 16) or all potential insertions

were tested unsuccessfully (line 21).

1: procedure Insertion(in: k, inout: temporary solution snext)
2: U := set of unassigned customers in snext
3: T := set of used tours in snext (+ one empty tour, if not all vehicles are used)
4: ins poss := false � indicates whether at least one insertion is possible
5: for each i ∈ U do
6: Ii := ∅ � set of best feasible insertions of customer i
7: for each t ∈ T do
8: {insit} := select ins(i, t, snext) � select the best feas. insertion into tour t
9: Ii := Ii ∪ {insit}
10: end for
11: if |Ii| > 0 then � at least one insertion is possible for customer i
12: sort Ii by non-decreasing insertion costs, ins poss := true
13: end if
14: end for
15: while |U | > 0 do
16: if ins poss = false then
17: return � terminate if no insertion possible
18: end if
19: if k = 1 then � Greedy
20: i := argmini∈U c(Ii(1)) � Ii(1): cheapest insertion in Ii
21: else � Regret-k
22: for each i ∈ U do ri :=

∑k
j=1(c(Ii(1))− c(Ii(j))) end for

23: i := argmaxi∈U ri
24: end if
25: insert i at its minimum cost position into snext
26: t := tour into which i was inserted
27: U := U \ {i}
28: ins poss := false
29: for each j ∈ U do � update the best feasible insertion for tour t
30: Ij := Ij \ {insjt}
31: insjt := select ins(j, t, snext)
32: Ij := Ij ∪ {insjt}
33: if |Ii| > 0 then
34: sort Ii by non-decreasing insertion costs, ins poss := true
35: end if
36: end for
37: end while
38: end procedure

Figure 8: Insertion heuristic

If customers are removed, the tours are not tested for packing feasibility. Hence, infeasi-

ble solutions may occur if no customer is reinserted into a tour altered by the removal.

Therefore, if a new globally best solution is found, it is also checked for feasibility. It is

only accepted if it is feasible with respect to the packing feasibility.

Moreover, a cache is used to reduce the packing effort. Routes are stored that have already

been packed. However, for the LS-based packing procedures only those routes are saved

that have been packed successfully. Due to the random component of the heuristics, it

may happen that a route that could not be packed in one iteration can be packed feasibly
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1: procedure select ins(in: customer i, tour t, solution s, out: best insertion ins)
2: I := ∅ � set of all insertions into tour t
3: if dLt + dLi > D or dBt + dBi > D then
4: return ∅
5: end if
6: for p = 0 to nt do
7: c(insitp) := cost of inserting i into tour t at position p
8: I := I ∪ {insitp}
9: end for
10: sort I by non-decreasing cost
11: while |I| > 0 do
12: ins := I(1) � element of I with the least cost
13: R := Rt with i inserted at position p(ins) � Rt: Route t of s
14: if R is feasible w.r.t. time windows and weight capacity at each stop then
15: if R can be packed feasibly then � call of packing procedure
16: return {ins}
17: end if
18: end if
19: I := I \ {ins}
20: end while
21: return ∅
22: end procedure

Figure 9: Procedure select ins

in another.

5 Computational experiments

In experiments, we tested the ALNS for the one-dimensional VRPSDP in order to evaluate

its performance and competitiveness with other procedures. Moreover, we examined the

hybrid algorithm combining the ALNS with a packing procedure for solving the 3L-

VRPSDPTW.

In Section 5.1, one-dimensional instances are selected from the literature and newly gen-

erated 3L-VRPSDPTW instances are described.

In Section 5.2, parameter values are chosen for the proposed ALNS and the hybrid algo-

rithm.

In Section 5.3, test results for the one-dimensional VRPSDP are presented and evaluated.

Test results for three variants of the hybrid algorithm for solving the 3L-VRPSDPTW

are analysed in Section 5.4. They differ w.r.t the used packing heuristic.

The hybrid algorithm was implemented in C++ and the experiments were run on a

Haswell system with up to 3.2 GHz and 16 GB RAM per core.
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5.1 Problem instances

One-dimensional instances

For the one-dimensional tests of the ALNS, we used 14 VRPSDP instances introduced in

[41] with the number of customers ranging from 50 to 199. The instances can be down-

loaded at: https://www.kent.ac.uk/kbs/research/research-centres/clho/datasets.

html.1

However, the ALNS was originally developed for solving various VRP variants. Therefore,

not only VRPSDP instances were used for determining appropriate parameter values for

different problem classes. In addition, instances of [44] (VRP with time windows), [18]

and [52] (VRP with clustered backhauls (VRPCB)), [16] (VRPCB with time windows),

and [41] (VRP with mixed backhauls), were selected for parameter setting.

Three-dimensional instances

Since no 3L-VRP instances exist which include backhaul and time window aspects, new

instances have been generated. For these instances, the customer locations have been

determined randomly. The generation of time windows is based on [44]. The proportion

of customers who have a time window (time window density) differs in each instance. A

customer time window is generated in the following way: Its centre is selected randomly

from the interval [RT0 + c0i, DD0 − ci0 − STi] (for the time windows of the depot, see

Table 2). The time window width is a normally distributed random number with mean μ

and standard deviation σ as listed below. If no time window is assigned to a customer i,

the customer receives a “fictional” time window (RTi, DDi) = (0, DD0 − ci0 − STi). We

further assume that the service times of all customers are identical. In order to evaluate

the impact of different levels of item heterogeneity, we generated instances with different

numbers of item types.

The generation of items is based on [17] where the item length (width, height) is uniformly

randomly distributed in the interval [0.2L, 0.6L] ([0.2W , 0.6W ], [0.2H, 0.6H]). This

approach is also used for the item length and width for the new instances. However,

since we consider the loading variant with a horizontally split loading space, the item

heights must not be larger than 0.5H. In addition, we also consider instances with small

1Note that we omit the 14 instances with drop times and maximum distance constraints since those
problem aspects are not considered here and the instances are identical to the other 14 instances with
respect to the other problem information.
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items. They are generated with a length (width, height) of [0.1L, 0.3L] ([0.1W, 0.3W ],

[0.1H, 0.3H]). To each item type a weight is assigned that is uniformly distributed between

1[weight units
vol. units

] · item vol.[vol. units] and 10[weight units
vol. units

] · item vol.[vol. units]. Moreover, at

least one item type but at most 20 % of the item types is fragile. The dimensions of

the loading space are fixed to L = 60, W = 25 and H = 30 and the weight capacity to

D = 200 for all instances.

The number of available vehicles vmax was determined by means of the savings heuristic

in order to ensure that a feasible solution exists.

The chosen values for the different instance features are given in Table 2.

Table 2: Instance characteristics
Feature Parameters

Total number of items m 200
Number of customers n 20, 60, 100
Number of items per customer 5-15 for n = 20, 2-5 for n = 60, 1-3 for n = 100
Share of linehaul items 50 % , 80 %
Time window width wide: RT0 = 0, DD0 = 1000, μ = 240, σ = 60,

narrow: RT0 = 0, DD0 = 230, μ = 60, σ = 10
Time window density 25 %, 50 %, 75 %, 100 %
Sizes of items large ([0.2L, 0.6L], [0.2W, 0.6W ], [0.2H, 0.5H]),

small ([0.1L, 0.3L], [0.1W, 0.3W ], [0.1H, 0.3H])
Number of different item types 3, 10, 100
Support parameter α 75 %

For each combination of the instance characteristics number of customers, time window

width, linehaul share, item size and number of item types five instances were generated.

However, instances with 20 customers and large items were omitted. Due to the relatively

large number of items per customer, the items of two customers (let alone more than two)

would not fit into a vehicle together. The resulting solutions would, thus, consist of

single-stop tours. All in all, 300 instances were generated for the 3L-VRPSDPTW.

5.2 Parameter setting

50 one-dimensional VRP instances (of which ten were VRPSDP instances) were used for

parameter tuning of the ALNS (see above). The settings from [40] were used as a basis.

Different values were tested for the parameters successively while all others were fixed.

The best settings were kept for each parameter. During the tests, the ALNS was applied

five times to each instance and for each tested parameter combination. The final settings

are given in Table 3. The same parameter values were used later for the three-dimensional
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case. The only parameter which is specific to this case, is imax which occurs in connection

with the LS-based packing procedures. It determines up to which number of items in

a route all item sequence permutations are packed (see secton 4.2). In this case, the

parameter value was adopted from [64].

Table 3: Parameter settings

Parameter Description Value

itermax Max. number of iterations 25000
iterno impr Max. number of iterations without im-

provement
8000

tmax Time limit [min] 15 for n = 20,
60 for n ≥ 60

nomin, nomax Interval for number of removed customers 0.04n, 0.4n
σ1, σ2, σ3 Weight adjustment parameters 50, 10, 5
ω1, ω2, ω3, ω4 Shaw weights 6, 3, 2, 6
p Determinism parameter 6
r Reaction factor 0.8
seg Segment length 100
η Noise parameter 0.025
γ Cooling rate 0.99975
w Start temperature control parameter 5 %
penv Penalty term for violation of the tour

number restriction; cmax = maxi,j∈N cij

10 · cmax

penmv Penalty term for missing customers 1 · cmax

imax Max. number of items in a route up to
which all item sequence permutations are
packed

8

5.3 Results for the VRPSDP

Table 4 reports the results for the VRPSDP instances from [41]. Since it contains several

random components, the ALNS was applied five times to each test instance.

In the columns 3-6, total travel distances (TTDs) are given. In columns 3 and 4, the

average (ALNS avg.)/ best (ALNS best) TTDs of the ALNS are presented. In columns

5 and 6, the best known TTDs (BKS ) and the best TTDs provided by [39] (RP06 ) are

indicated. In columns 7 and 8, the solutions of our approach are compared to the best

known solutions (gap BKS ). The percentage gaps between the average/ best TTDs of

the ALNS and the TTDs are given. In the following column (gap RP06 ), the percentage

gaps between the best TTDs provided by the ALNS and the best TTDs achieved by the

approach of [39] are listed.

The last column (t) contains the average computing times of our approach.
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The results indicate a very good performance of the algorithm. Averaged over the in-

stances, the gap between the average TTDs of the ALNS and the best known TTDs

amounts to -0.18 %. This makes the proposed ALNS one of the best published solution

approaches for the VRPSDP. Moreover, the tests show that our approach results in con-

siderably better solutions than the original ALNS in [39] with an average gap between

the best found TTDs of -4.26 % and improvements of up to 14.89 %. Some best known

values could also be improved by up to 5.7 %.

Table 4: Results of the ALNS for 14 VRPSDP instances
TTD gap BKS[%]

gap
RP06[%]

t[s]

Instance n
ALNS
avg.

ALNS
best

BKS RP06
ALNS
avg.

ALNS
best

ALNS
best

ALNS
avg.

CMT01X 50 471.24 470.48 466.751 467 0.96 0.80 0.74 3.48
CMT01Y 50 461.68 461.24 458.962 467 0.59 0.50 -1.23 4.11
CMT02X 75 686.82 684.29 668.772 702 2.70 2.32 -2.52 16.18
CMT02Y 75 659.36 659.29 663.252 685 -0.59 -0.60 -3.75 17.15
CMT03X 100 725.93 720.17 715.323 727 1.48 0.68 -0.94 32.25
CMT03Y 100 712.49 702.73 719.004 734 -0.91 -2.26 -4.26 27.72
CMT04X 150 855.12 854.17 852.465 877 0.31 0.20 -2.60 126.80
CMT04Y 150 833.32 828.64 847.583 854 -1.68 -2.24 -2.97 85.71
CMT05X 199 1,072.40 1,066.72 1,029.256 1108 4.19 3.64 -3.73 218.94
CMT05Y 199 990.92 987.12 1,029.256 1131 -3.72 -4.09 -12.72 260.04
CMT11X 120 831.38 829.84 833.926,7 837 -0.31 -0.49 -0.86 75.85
CMT11Y 120 795.93 783.06 830.392 920 -4.15 -5.70 -14.89 59.67
CMT12X 100 663.78 660.82 644.702 683 2.96 2.50 -3.25 31.32

CMT12Y 100 630.52 628.12 659.522 673 -4.40 -4.76 -6.67 29.69

Minimum -4.40 -5.70 -14.89 3.48
Average -0.18 -0.68 -4.26 70.64

Maximum 4.19 3.64 0.74 260.04

(References BKS: 1[15], 2[57], 3[24], 4[48], 5[60], 6[45], 7[61])

5.4 Results for the 3L-VRPSDPTW

Firstly, the best packing construction heuristic was determined. For this purpose, the

four construction heuristics described in section 4.2 were applied to randomly generated

routes of the new 3L-VRPSDPTW instances. The performance of the different heuristics

was evaluated based on the share of routes that could be packed feasibly. In another test,

the savings heuristic was applied to the same instances and the resulting travel distances

were compared.

In the second step, three versions of the hybrid algorithm, based on the best construction

heuristic, were applied to the 3L-VRPSDPTW instances.
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Determination of the best packing construction heuristic

Results for random routes: As mentioned above, we wanted to determine the best pack-

ing construction heuristic first. The different heuristics were applied to more than 37,000

randomly generated routes of the above introduced three-dimensional instances with dif-

ferent levels of loading space volume utilization. For small items they ranged from 25 to

90 %, and for large items from 10 from 60 %.

Table 5 contains the results of these tests showing the shares of routes that could be

packed feasibly in the respective intervals and with the respective packing heuristics. The

results indicate that the DBLF heuristic is the dominant one with more feasibly packed

routes in each interval and for both large and small items. The TA heuristic which also

takes the container walls into account (TA-Walls) yields comparatively good results for

routes with large items. However, both TA heuristics are clearly dominated by the DBLF

heuristics in the case of small items.

Results for the savings heuristic: Furthermore, the savings heuristic was applied to the

3L-VRPSDPTW instances with the different packing construction heuristics. The results

are presented in Table 6. The average percentage gaps between the obtained TTDs and

the best ones found over all packing procedures are indicated for the instances with large

and small items and for all instances. The obtained results support the insights of the

first packing tests. In total, the best solutions were achieved with the DBLF heuristic.

Although it is outperformed by the TA heuristics in the case of large items, it clearly

dominates the TA heuristics in the case of small items. Therefore, we will use the plain

DBLF approach for the further experiments.

Table 5: Results of the application of the packing heuristics to random routes
Share[%] of feasibly packed routes

Vol. utilization[%]
10-
20

20-
30

30-
40

40-
50

50-
60

60-
70

70-
80

80-
90

To-
tal

Large DBLF 98.6 86.4 61.2 34.2 12.1 57.3
items DBLF (st.) 98.1 83.2 56.6 30.4 11.5 54.7

TA-noWalls 97.9 80.1 52.8 28.1 10.3 52.6

TA-Walls 98.4 84.6 57.6 29.8 10.8 55.0

Small DBLF 98.9 89.6 58.9 31.7 10.7 0.9 0.0 37.1
items DBLF (st.) 77.7 57.5 35.2 19.1 5.9 0.4 0.0 24.2

TA-noWalls 55.9 35.9 18.5 7.3 1.8 0.2 0.0 14.1

TA-Walls 44.0 26.3 9.8 2.8 0.3 0.0 0.0 9.4
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Table 6: Results of the savings heuristic combined with different packing heuristics

Gap[%] w.r.t. the best found TTDs

Heuristic Large items Small items Total

DBLF 1.93 0.30 0.68
DBLF (stable) 1.96 1.23 1.40
TA-noWalls 1.79 3.83 3.36

TA-Walls 0.80 7.51 5.71

Results for the hybrid algorithm

Since there are no benchmark results available for the 3L-VRPSDPTW instances, we com-

pare the results of different versions of the hybrid algorithm each combining the ALNS

with one of three packing procedures – namely the DBLF, the DBLF in combination with

the LS approach, or the LS procedure of [64]. Furthermore, two alternative loading ap-

proaches (side loading and loading space partition) were applied. As before, the approach

was applied five times to each instance.

The results are presented in Table 7. The first four columns refer to the instance charac-

teristics and contain the number of customers (n), the item sizes (Items), the width of the

time windows (TW ), and the share of linehaul items (LH ). The following columns present

the results for the different packing heuristics: the DBLF-heuristic, the LS in combination

with the DBLF procedure (LS DBLF ) and the LS approach of [64] (LS OS ). The loading

approaches loading space partition (LSP) and side loading (Side) are compared. The

columns gap l represent the average percentage gaps between the obtained TTDs and the

best TTDs for the respective loading variant, whereas the columns gap give the average

percentage gaps between the obtained TTDs and the best found TTDs over both loading

approaches.

Comparing the different packing procedures, the best results could be achieved with the

LS DBLF approach. The obtained travel distances deviate 0.89 % (LSP) and 0.88 %

(Side) from the ones of best found solutions for the respective loading variants. With

a gap of 1.54 % from the best TTDs, the results with the LS OS for the loading space

partition are also rather good. Interestingly enough, with the side loading approach

the ALNS with the simple DBLF heuristic delivers, on average, better solutions than

the LS OS. However, this is most likely not because the DBLF heuristic delivers better

packing results. The LS OS needs much more computing time than the other approaches.

Thus, less iterations can be run within the computing time limit leading to worse solutions
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regarding the routing problem. In fact, the results indicate that the good quality of the

LS-based heuristics do not necessarily offset their large requirements of computing times.

The instances with the biggest effort in packing – because they often require many items

to be packed within one tour – are the ones with 100 customers (thus, with few items per

customer), small items and wide time windows. With respect to these instances, the best

results were obtained with the ALNS in combination with the DBLF heuristic.

Considering the different loading approaches it can be stated that side loading produces

better results than rear loading with separated loading space. With all compared packing

heuristics the solutions obtained with the side loading approach deviate less from the

best found solutions. These results could be expected since the side loading allows to

take full use of the loading space. The differences are comparatively large for instances

with large items. Small items could be packed easier into the separated loading space and,

thus, rather good solutions could be achieved with this approach, too. Moreover, the side

loading approach seems to be particularly beneficial if the share of delivery and pickup

items is unequal since the compartments for linehaul and backhaul items are equally

large in the case of the LSP. Hence, the largest deviations from the best found TTDs

resulted for instances with large items and a share of 80 % linehaul items. However,

there are instance classes in which the LSP approach actually led to better solutions than

the side loading. Namely, this is the case for the ALNS combined with LS OS and the

instances with 100 customers and small items. Presumably, the same reasoning as above

can be given here. The side loading approach requires more computing time than the LSP

approach (see below) and, thus, less iterations of the ALNS can be run within the time

limit. In combination with the implied difficulty of the instances this affects the results

much more than in the case of other instance classes.

Table 8 shows an overview of the average computing times (t) and the average number

of iterations that where run (iter) in the different instance classes and with the differ-

ent packing heuristics. The three stopping criteria listed above have been applied. For

instances with 20 customers, best solutions were found rather quickly which is why the

computations stopped after not even 9,000 iterations on average. Naturally, the comput-

ing times increase with the number of customers due to the increasing difficulty of the

underlying VRP. As mentioned above, instances with small items and/or wide time win-

dows usually lead to solutions containing tours with many items to be packed. Therefore,

these instance classes are solved within comparatively long computing times. Further-
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more, the side loading approach is related to a higher computational effort than the LSP

since the packing plans for every stop of a tour must be compared in order to ensure that

they do not overlap. Hence, the computing times for the side loading approach is higher

in most cases. Moreover, the general impact of the packing procedures on the computing

times can be concluded as well. The time limit was never reached in the one-dimensional

case (see Table 4). There, instances with 100 customers could be solved in about 30

seconds. In the three-dimensional case, though, the time limit of one hour was reached

frequently.
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6 Conclusions

In this paper, the 3L-VRPSDPTW was introduced which is an integrated routing and

packing problem. The routing subproblem contains the VRP with simultaneous delivery

and pickup, a VRP variant in which goods are delivered to the customers from a central

depot, and – at the same time – goods are picked up from them. This approach allows for

organizing transportations more economically by reducing the number of empty vehicle

trips. The problem occurs, for example, in the retail sector if the delivery vehicles pickup

packaging material, like empty cardboard or cooling boxes. For a more realistic modelling,

the transported goods are assumed to be three-dimensional items which must be packed

into the loading space observing several packing constraints in order to guarantee stability

and accessibility of the load.

A hybrid solution approach consisting of an ALNS to solve the routing subproblem and a

packing procedure to tackle the packing subproblem was presented. In contrast to previ-

ously presented variants of the ALNS, we work with a relatively large number of removal

heuristics. The adaptive weight adjustment component of the ALNS aims to choose the

best performing heuristics for each instance in the course of the search. Some new removal

operators were developed for this purpose. The results for one-dimensional VRPSDP in-

stances indicate that the proposed ALNS belongs to the best published approaches for

this problem. Since it improved the solutions found by the original approach significantly,

it can be concluded that the new operators and the usage of a large number of removal

operators are very valuable additions to the ALNS. Moreover, different packing heuristics

– simple construction heuristics and more complex LS-based procedures – were tested and

integrated into the ALNS.

The hybrid algorithm was applied to 300 newly generated 3L-VRPSDPTW instances

with three alternative packing procedures. The best results were obtained with a LS-

based packing procedure into which a DBLF packing heuristic was integrated. However,

although the LS-based packing procedures are in general able to solve a larger number of

packing problems (i.e. to proof the feasibility of a larger number of routes), their com-

paratively large computational effort can also be a huge disadvantage compared to simple

construction heuristics. In some problem classes, the ALNS combined with the simple

DBLF led to the best results, especially in the case of instances where long routes with

many items are possible. This is presumably because the LS-based packing procedures re-
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quire so much computing time that considerably fewer ALNS iterations can be conducted

within a given limit.

In order to avoid any reloading effort, we have considered two loading variants to handle

the simultaneous transport of linehaul and backhaul items. Whereas the loading space

partition approach is implemented comparatively easily, better solutions resulted from the

more difficult side loading approach. The differences are particularly high for instances

with large items or an uneven share of linehaul and backhaul items.

The integration of vehicle routing problems with backhauls and packing problems is an

interesting topic for further research as there are different backhaul variants that could be

considered. Furthermore, we focused on a problem in which the reloading during the tour

is completely forbidden. The implementation of such reloading efforts into the 3L-VRP

(with or without backhauls) could be a promising approach, though, in order to better

utilize the vehicle capacities and, thus, save travel distance.

AcknowledgementsWe thank Lijun Wei (JiangXi University of Finance and Economics,

China) for providing us with the program for the local search and the open space heuristic.
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