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Abstract

Complexity of strategies is central for human decision making and at-
tracted interest of different game theorists in the recent years. Neverthe-
less, behavioral economists have neglected the importance of complexity
in their analyses. In this paper, we analyze network formation and action
selection in a Hawk Dove Game with focus on complexity aspects. We
conduct experiments with three variants of the game which are equivalent
from a game theoretic perspective, but differ from a complexity theoretic
perspective. Our results show, that complexity of decision making has
an impact on the strategies played and that efficiency is higher the less
complex the decision problem is.

With the emerging popularity of game theory we put increasing interest
in predicting human behavior with simple game theoretic models. We can
reduce several everyday decision problems to the prisoner’s dilemma, coordi-
nation games or other simple bimatrix games. At the same time, game theo-
rists are aware of the fact that complexity of the decision situation can prevent
players from resorting to certain equilibria. Therefore, they introduced ex-
tensions of traditional models, which capture the complexity of decision prob-
lems (see e.g. (Abraham Neyman 1985, Ariel Rubinstein 1986, Ehud Kalai
& William Stanford 1988)). Behavioral sciences analogously show (Georg A.
Miller 1956, Nelson Cowan 2001) that the human ability to process information
is limited. Nevertheless, to date a gap between both results, namely game the-
oretic models capturing complexity and behavioral research on limits of human
information processing, exists.

In this paper, we argue that the lack of complexity is central in networking
problems. Here, participants simultaneously decide with whom to interact and
what strategies to use. Resulting, as we will show, in difficult decision prob-
lems. The focus of this paper lies on several different aspects: (1) Will varying
the complexity of decision problems influence the equilibria participants in be-
havioral experiments play? (2) Does complexity influence the overall payoffs
reached? (3) Which complexity models capture human behavior best? By an-
alyzing these aspects, we go a first step towards narrowing the gap between
behavioral justification and game theoretic modeling of complexity.

∗S. Berninghaus: Karlsruhe Institute of Technology, 76131 Karlsruhe,
siegfried.berninghaus@kit.edu. S. Schosser: Karlsruhe Institute of Technology, 76131
Karlsruhe, stephan.schosser@kit.edu. B. Vogt: University of Magdeburg, 39106 Magdeburg,
bodo.vogt@ovgu.de. Acknowledgements
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Traditional evolutionary game theory focuses on the evolution of strategy
configurations in populations of players who play the same two-person game with
the whole population via random matching. Researchers investigate whether
population members coordinate on one particular equilibrium of the one-shot
game (see e.g. (H. Peyton Young 1993, Madjid Amir & Siegfried K. Berninghaus
1996)). Early game theoretic analyses of networks extend this work by exter-
nally imposing fixed network structures (see e.g. (Siegfried K. Berninghaus &
Ulrich Schwalbe 1996, Siegfried K. Berninghaus 1996, Siegfried K. Berninghaus,
Karl-Martin Ehrhart & Claudia Keser 2002)). In corresponding work on action
selection, players are exclusively matched with a fraction of the population, their
neighborhood, and not with any other member of the population. Furthermore,
the neighborhoods are overlapping. I.e., each member of the population can
belong to several neighborhoods. In analogy to traditional evolutionary game
theory, analyses of action selection in networks investigate whether the struc-
ture of the network ensures that one equilibrium is spread across the whole
population or that different equilibria coexist.

A drawback of models with a focus on action selection is that the model
maker imposes the network structure exogenously. Literature on network for-
mation overcomes this drawback. Here, the members of the population decide
which network structure to establish by playing a non cooperative network game
(see e.g. (Matthew O. Jackson & Asher Wolinsky 1996, Venkatesh Bala & San-
jeev Goyal 2000, Hans Haller & Sudipta Sarangiz 2003)). Network games are
commonly interpreted as information exchange games in which the payoff of one
member of the population depends on the number of other population members
he is (directly or indirectly) connected to.

As models on action selection, models on network formation have their draw-
backs. One central criticism concerns their applicability to real world problems.
While network formation itself is important, it is unclear who will establish a
link, if one cannot use this link for beneficial interaction. Therefore, models
emerged which combine network formation and action selection (see e.g.(Brian
Skyrms & Robin Pemantle 2000, Yann Bramoullé, Dunia López-Pintado, San-
jeev Goyal & Fernando Vega-Redondo 2004, Siegfried K. Berninghaus & Bodo
Vogt 2006). In these models the members of the population simultaneously de-
cide with whom they want to interact and what strategy they want to play in
a two person game identical to all members in the population.

In contrast to bimatrix games, games on network formation or games on
action selection in networks the simultaneous choice of actions and network links
is complex. Each member of the population has to anticipate the links all other
member establish and what strategies they play depending on their link choice.
Only if this prediction is adequate, he can resort to the equilibrium strategy.
While the corresponding decisions are rather simple in coordination games as all
members can coordinate towards one common strategy and than link to each
other, decision are difficult in anti-coordination games. Here, strategies can
coexist within the population. Therefore, in this paper we focus our analysis on
hawk-dove games, a popular variant of anti-coordination games.

A recent experimental study (Siegfried K. Berninghaus, Karl-Martin Ehrhart
& Marion Ott 2010) analyzed the network formation and action selection using
a Hawk Dove Game as base game. According to this study participants do not
play the Nash equilibrium. Nevertheless, the authors observed that participant
behavior is regular. The participants ended up in stable strategy configura-
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tion that, also different to the Nash prediction, where similar across different
participant groups.

In this paper, we experimentally analyze the behavior of participants in a
game on network formation and action selection using a Hawk Dove Game. We
play three different treatments of the game varying the complexity of the game:
(1) In the first treatment, we let participants changes their neighborhoods, i.e.
their links, and their actions in the Hawk Dove Game every period. (2) In the
second treatment, we restrict participants choices by letting them only modify
their action choices in all periods. (3) In the third treatment, participants
can only modify their link choices throughout all periods. Also behavior is
consistent within each treatment, it differs across the three treatments. This is
especially surprising, as from a game-theoretic perspective participants face the
same equilibria in all treatments.

The results get clearer, when analyzing the results with respect to complex-
ity. In this way, we can show that all three treatments differ concerning the
complexity of decision making for the participants, and that participants are
closer to the game theoretic prediction the less complex their decision situa-
tion is. We deem this work an important first step towards understanding the
boundaries of human decision making.

We introduce our game in the following section. In Section 2 we analyze the
game from a theoretic perspective. In Section 3, we discuss our experimental
design, before we describe the experimental results in Section 4. We discuss our
results with respect to complexity prediction in Section 5, before we conclude
in Section 6.

1 The Game

The remainder of this section formally introduces the Network Hawk Dove Game
(Berninghaus & Vogt 2006) which builds the basis for our analyses. In the
Network Hawk Dove Game players face two decisions. First, they choose to
whom they want to establish a link at a certain cost. Second, they choose
one action in a bimatrix game, namely the Hawk Dove Game, they use when
interacting with the players they are linked to.

Formally, in a set I = {1, . . . , n} of n players, each single player i ∈ I
takes part in Hawk Dove Games with all other players i is linked to, using a
Network Game. The Hawk Dove Game is a symmetric 2× 2 normal form game
GH := {ΣH ,ΠH(·)} with ΣH := {X,Y }1 and ΠH(·) represented by the payoff
matrix in Table 1.

Table 1: Payoff Matrix Hawk Dove Game (with a > b > c > d > 0)

Hawk (X) Dove (Y)
Hawk (X) d,d a,c
Dove (Y) c,a b,b

Aside the Hawk Dove Game players participate in a Network Game GN :=

1In the remainder of this paper, we call strategy X hawk strategy and Y dove strategy.
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{ΣN ,ΠN (·)}. In the Network Game the players decide with whom they want
to interact. Hence, each strategy in the Network Game σN

i is a subset of all
players σN

i ⊆ ΣN \ {i} with ΣN := I. Establishing links to other players is not
costless, but infers a cost k per established link. Hence, we define the payoff of
the Network Game as HN (σN

i , σN
−i) := −k · |σN

i |, with k > 0. If at least one
link, between two players i and j exists, i.e. if at least a unilateral link exists,
both players participate in a Hawk Dove Game GH .

Each strategy profile σN = (σN
1 , . . . , σN

n ) implies a directed graph g(σN ) =
(V (σN ), E(σN )), with edges E(σN ) and vertices V (σN ). Each vertex vi ∈
V (σN ) corresponds to one player i ∈ I. For each link a player i establishes to
another player j, i.e. if j ∈ σN

i , an edge (i, j) from vertex vi to vj exists in
E(σN ). We call all players j player i has outgoing edges to active neighbors,
formally the active neighbors of i are σN

i . Aside his active neighbors, each player
i has passive neighbors, i.e. players establishing links towards him. Formally,
we define the set of passive neighbors as {j|(j, i) ∈ E(σN )}. We call all players
linked to player i, be it active or passive, his neighborsNi(σ

N ) := σN
i ∪{j|(j, i) ∈

E(σN )}.
Using both, the Hawk Dove Game GH and the Network Game GN , we com-

pose the non-cooperative Network Hawk Dove Game Γ := {S;H} with a strat-
egy set S := ΣH×ΣN and payoff function P : S → R. In this game, the strategy
si ∈ S of each player i consists of his action2 in the Hawk Dove Game σH

i and
the choice of his active neighbors σN

i . To simplify presentation, we define the
number of neighbors playing the hawk strategy as ni

X(s) =
∑

j∈Ni(σN ) 1{σH
j =X}

and the neighbors playing the dove strategy as ni
Y (s) =

∑
j∈Ni(σN ) 1{σH

j =Y }.
We formally represent the number of all neighbors by ni(s) := |Ni(σ

N )|.
Depending on the action σH

i player i uses in the Hawk Dove Game, his payoff
is defined as:

Pi(s−i, {X;σN
i }) := d · ni

X(s) + a · ni
Y (s)− k |σN

i |

Pi(s−i, {Y ;σN
i }) := c · ni

X(s) + b · ni
Y (s)− k |σN

i |
In other words, we define the payoff of player i as the benefit from participating
in a Hawk Dove Game with each of his neighbors minus the costs for establishing
links to his active neighbors according to the Network Game.

Formally the Network Hawk Dove Game is a combination of two isolated
games, the Hawk Dove Game and the Network Game. This allows us to in-
troduce two versions of the Network Hawk Dove Game: (1) In the Fixed Link

Game ΓN , we reduce the strategy set of the players to ΣH and enforce a fixed
set of links σN with σN ⊆ ΣN \ {i}. We leave everything else unchanged. I.e.,

each player i faces link costs for his active neighbors σN
i and plays a Hawk Dove

Game with all neighbors Ni(σN ). (2) We derive the Fixed Action Game ΓH by
reducing the strategy set of the players to ΣN . Here, we enforce a fixed set of
actions σH . Again, everything else is unchanged. I.e. each player i can modify
his set of active neighbors σN

i , although his and all fellow players actions σH

in the Hawk Dove Game are fixed. Notice, also the Network Hawk Dove Game

2To clarify presentation, in the remainder of this paper, we call strategies in the Hawk Dove
Game actions, strategies in the Network Game links and strategies which combine actions and
links in the Network Hawk Dove Game strategies.
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has been analyzed both formally (Berninghaus & Vogt 2006) and experimen-
tally (Berninghaus, Ehrhart & Ott 2010), this paper is the first to study the
Fixed Link Game and the Fixed Action Game.

2 Game Theoretic Predictions

We now introduce equilibria predictions for the one-shot Network Hawk Dove

Game Γ and both versions of the game, the Fixed Link Game ΓN and the Fixed

Action Game ΓH , before we discuss all three games concerning efficiency. All
results concerning the Network Hawk Dove Game follow the formal introduction
in the literature (Berninghaus & Vogt 2006), while this paper is the first to
discuss theoretic predictions concerning the Fixed Link Game and the Fixed
Action Game. We focus our analysis on a scenario in which b > k > c holds as
we deem this scenario to be the most interesting: (1) If k > a holds, no links are
established. (2) If a > k > b holds, only links from hawks to doves pay. Hence,
the link decision of doves is trivial. They should never establish any links. (3) If
c > k > d holds, all links except links between hawks always pay. Hence, doves
should always establish all links, turning the link decision trivial again. (4) If
d > k, all links pay. Aside these four scenarios, if a > b > k > c > d holds, links
from hawks to doves pay, while they do not pay between hawks, and links from
doves to hawks do not pay, while they pay between doves, offering all players
interesting link decisions.

2.1 Nash Equilibria

In the remainder of this section, we derive all stable strategy configurations of

ΓN and ΓH , before we discuss the equilibria in Γ. We base our considerations
on the following extension of the Nash concept(Berninghaus & Vogt 2006).

Definition 1 Each strategy configuration s∗ = (σN∗, σH∗) in Γ is an equilib-
rium if

∀i : Pi(s
∗
−i, s

∗
i ) ≥ Pi(s

∗
−i, si) for si ∈ Si.

In an equilibrium no player has an incentive to deviate by either changing
his links σN∗

i ∈ ΣN or actions σH∗
i ∈ ΣH unilaterally. Notice, this definition

holds in all three versions of the game, namely ΓN , ΓH and Γ.

Lemma 1 Given a Fixed Action Game ΓH an equilibrium s∗ in ΓH is estab-
lished, if the following statements hold:

a) Each hawk player builds links to all doves, but no links to other hawks.

b) Each dove player has exactly one (active or passive) link to each other
dove player, but no link to any hawk players.

Both conditions, namely (a) and (b), directly follow from a > b > k > c > d.
Players only establish links to other players, if their benefit from playing the
Hawk Dove Game exceeds the cost of the link. The benefit of a hawk player
facing a dove player, a, exceeds the link costs k, as does the benefit of a hawk
player facing another dove player b. Hence, in equilibrium such links exist, while
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links from hawks or doves to hawks do not. In addition, dove players connected
via a bilateral connection can improve their payoff by dropping one link resulting
in an unilateral connection.

Lemma 2 Given a Fixed Link Network Hawk Dove Game ΓN an equilibrium

s∗ in ΓN is established, if the following statement holds:

a) Each player i uses the hawk action, if in his neighborhood the following
condition holds

ni
X(s) <

ni(s)(a− b)

c− d+ a− b
. (1)

b) Each player i uses the dove action, otherwise.

Conditions (a) and (b) follow from the payoff function P (·) of the Network
Hawk Dove Game. The payoff of the hawk action exceeds the payoff of the

dove action, if the following inequality holds: Pi(s
∗
−i, {X;σN

i }) = d · ni
X(s) +

a · ni
Y (s) − k |σN

i | > c · ni
X(s) + b · ni

Y (s) − k |σN
i | = Pi(s

∗
−i, {Y ;σN

i }). This
inequality simplifies to the inequality of condition (a). A player resorts to the
dove action, if the inequality does not hold (condition (b)).

Lemma 2 has two implications: (1) If no link exists, the left hand side of
Equation 1 is undefined, as its denominator is 0. In this case player i can use
any action in equilibrium. (2) If at least one link in the network exists, no trivial
equilibria exist, in which the whole population chooses the hawk action or the

dove action, as 0 <
ni
X(s)
ni(s) < 1 holds3.

Lemma 3 Given a Network Hawk Dove Game Γ an equilibrium s∗ in Γ is
established, if the following statements hold (Berninghaus & Vogt 2006):

a) Each hawk player builds links to all doves, but no links to other hawks.

b) Each dove player has exactly one (active or passive) link to each other
dove player, but no link to any hawk players.

c) The number of hawk n∗
X in the population has to satisfy the condition

n∗
X ≥ (n− 1)(a− b)

a− b+ c− d
> 0. (2)

Following the same arguments as in Lemma 1 conditions (a) and (b) directly
follow from a > b > k > c > d. Condition (c) follows from Conditions (a) and
(b) and the payoff function P (·) of the Network Hawk Dove Game. According
to (a) and (b) hawk players only have active neighbors and their neighbors are
all doves. Hence, for unilateral deviation from hawk to dove to be beneficial,
the following inequality has to hold: Pi(s

∗
−i, {X;σN∗

i }) = n∗
Y a−k|σN∗

i | < n∗
Y b−

k|σN∗
i | = Pi(s

∗
−i, {Y ;σN∗

i }) This inequality is always false, as a > b holds. Each
dove player should deviate from dove to hawk if Pi(s

∗
−i, {Y ;σN∗

i }) = n∗
Xc +

(n∗
Y −1)b−k|σN∗

i | < n∗
Xd+(n∗

Y −1)a−k|σN∗
i | = Pi(s

∗
−i, {X;σN∗

i }) holds. This
inequality is false, if the inequality of condition (c) is met.

3This condition follows from comparing the right hand side of Equation 1 to 0 and 1 and
the equations a > b and c > d from the payoff matrix.
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Notice, that while conditions (a) and (b) in Lemma 3 and conditions (a) and
(b) in Lemma 1 are equivalent, condition (c) in Lemma 3 seem to contradict
Lemma 2. In the Fixed Link Game an upper bound for the number of hawk
players per neighborhood exists, while in the Network Hawk Dove Game, equi-
libria exist, in which all players resort to the hawk action. At the same time,
there is no lower bound for the number of hawk players in the Fixed Link Game
which does exist in the Network Hawk Dove Game.

2.2 Efficiency

After characterizing the properties of the Nash Equilibria in the Network Hawk
Dove Game, the Fixed Link Game and the Fixed Action Game, we now char-
acterize efficiency in the games.
Fixed Action Game: According to Lemma 1, in the Fixed Action Game
all links are established if and only if they increase the overall payoff of the
population. Hence, neither adding nor removing any links can increase any

payoffs. We conclude that in a Fixed Action Game ΓH every equilibrium s∗ in

ΓH is efficient.
Fixed Link Game: In the Fixed Link Game all links are fixed. Hence, we
focus our analysis on the links in the network. Links between two hawks yield
an overall payoff of 2 · d− k, links between two doves yield a payoff of 2 · b− k
and links between a hawk and a dove a payoff of c+a−k. Given that 2 ·d < 2 ·b
and 2 · d < c+ a holds, all combinations of hawk and dove players that form an

equilibrium are efficient, if 2 · b = c+ a holds. Hence, in a Fixed Link Game ΓN

equilibria s∗ in ΓN result in higher payoffs, the less links between hawks exist,
if 2 · b = c+ a holds.
Network Hawk Dove Game: Given a Network Hawk Dove Game Γ equilibria
s∗ in Γ result in higher payoffs, the more players resort to the dove action, if
2 · b = c+ a holds (Berninghaus, Ehrhart & Ott 2010).

Notice, that all three games are different from each other concerning effi-
ciency. While in the Fixed Action Game all equilibria are efficient, in Fixed
Link Games the number of links between hawks needs to be minimized to be
efficient. Finally, in the Network Hawk Dove Game players increase efficiency
by increasing the number of players using the dove action. In contrast to the
equilibrium predictions, the preconditions for efficient equilibria are inline for
all three games: The less hawks, and therefore the less links between hawks,
exist in the population the more likely are efficient outcomes.

2.3 Repeated Game

In finitely repeated versions of the three games, players will resort to the equi-
librium of the stage game. Hence, the described predictions for the stage game
will hold. The game becomes more interesting, if we consider finitely repeated
versions of the stage games and mix different stage games. In the remainder of
this section, we focus on mixing the Network Hawk Dove Game, with the Fixed
Link Game and the Fixed Action Game respectively.

Lemma 4 In a finitely repeated Network Hawk Dove Game all equilibria of the
stage game exist. These equilibria persist, even if several stages of repeated play
are replaced with Fixed Link Games or Fixed Action Games.
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As all equilibria of the stage game are equilibria of the finitely repeated game,
the equilibria described in Lemma 3 also exist in the repeated version of the
Network Hawk Dove Game. Replacing part of the stages with the Fixed Action
Game or the Fixed Link Game, neither reduces nor extends the set of equilibria.
In both modifications of the Network Hawk Dove Game, the strategy set is
limited compared to the Network Hawk Dove Game. Hence, players will choose
the equilibrium strategy of the Network Hawk Dove Game in corresponding
stages and resort to this strategy if the strategy set is limited. This observation
is obvious for the Fixed Action Game, as the equilibrium conditions for this
stage game are inline with the equilibrium conditions of the Network Hawk
Dove Game. Notice, that this even holds for the Fixed Link Game. If players
are in equilibrium during the Network Hawk Dove stage, they have no interest
in deviating from their current strategy: (1) All hawk players are connected to
other dove players only. Hence, condition (a) of Lemma 2 is met, and they will
continue playing the hawk action. (2) All dove players have incoming links from
all hawks and are connected to all other dove players. I.e. each dove player is
connected to every other player. In his neighborhood ni

X(s) = n∗
X and ni(s) = n

hold. Hence, a dove will keep playing the dove action if n∗
X > n(a−b)

a−b+c−d holds,
which is satisfied, if condition (c) of Lemma 3 is met.

Also equilibrium conditions for all three games differ, in a repeated game
mixing the stage games with each other results in the equilibrium predictions
of the Network Hawk Dove Game.

3 Experimental Design

To evaluate the equilibrium predictions described above, we conducted labo-
ratory experiments between September and November 2010 at the Karlsruhe
Institute of Technology. Each experimental session lasted approximately 1.5
hours. For all sessions, we recruited a total of 162 participants using ORSEE
(Ben Greiner 2004) from a pool of students in Karlsruhe. In the beginning of
each experimental session, we randomly assigned the participants to groups of
six. We handed out written instructions to each participant describing the ex-
perimental setup. After all participants had read the instructions, they played
one treatment implemented using zTree (Urs Fischbacher 2007) at a computer
terminal. Finally, we paid the participants in private depending on their success
in the treatment.

The baseline treatment (Treatment Basic) is equivalent to the Network Hawk
Dove Game and consisted of 50 periods. In every period, participants could spec-
ify other participants they wanted to establish links to and they could specify
the action they wanted to play. In the end of each period, the experimental soft-
ware calculated the payoff of the participants. For each link a participant had
established, he had to pay k = 50 points. All linked participants then played
the Hawk Dove Game shown in Table 2. I.e., if a participant played dove and
his neighbor played hawk, he received 40 points, while his neighbor received 80
points. If both participants played hawk, they received 20 points. They received
80 points when coordinating towards dove action. After payoff calculation, the
computer terminal showed the actions, all links and the individual performance
to each participant.

We conducted two modifications of Treatment Basic: (1) Treatment Fixed
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Table 2: Payoff Matrix Hawk Dove Game in the Experiment

Hawk (X) Dove (Y)
Hawk (X) 20, 20 80, 40
Dove (Y) 40, 80 60, 60

Link and (2) Treatment Fixed Action. In Treatment Fixed Link participants
played the Network Hawk Dove Game during the first period and then every
fifth period, i.e. in period 6, 11, 15, .... In all other periods participants played
the Fixed Link Game. In Treatment Fixed Action, the Network Hawk Dove
Game was played during the same periods as in Treatment Fixed Link. In all
other periods, participants played a Fixed Action Game.

In the end of the experiment, all participants received a show up fee of 5.00
e . For 1, 000 points earned during the experiment, a participant received 1.00
e . On average each participant earned 11.39 e .

4 Experimental Results

To get a first impression of our experimental results, we compare the behavior of
all participants over time (see Figure 1). A first look at the data shows that the
number of participants playing hawk per group (see Table 3 for averages over all
periods) lies between 2 and 3 and remains stable throughout the experiment for
all three treatments. An exception is the first and the last period (especially in
Treatment Basic and Treatment Fixed Link). Here, the number of participants
playing hawk is lower in the first periods and increases during the last periods.
To reduce the impact of such start game and end game behavior respectively,
we focus on Periods 10 to 40 in the rest of our analysis.

a) Treatment Basic b) Treatment Fixed Link

c) Treatment Fixed Action d) Legend

Figure 1: Development of behavior during the experiment
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The number of links seems to be almost constant in Treatments Basic and
Treatment Fixed Link. This may not be very surprising for Treatment Fixed
Link where we did not allow link changes for five periods. But even if we
allowed participants to adapt links in this treatment they did not vary the
total number of links. In Treatment Fixed Action we observe a typical pattern
of behavior. During the period in which we allowed participants to switch
actions they drop links sharply expecting unprofitable links. This “crash” of
links after every 5 periods observed in Treatment Fixed Action is perfectly
correlated with the number of link errors, i.e. the number of existing links that
have a negative impact on the payoff or non existing links which would increase
payoffs, which sharply increases before action changes are allowed. Independent
of the number of periods with fixed actions, we expect the same decrease to
occur before participants can change their action. To reduce the impact of
these crashes, we focus our analysis on the rounds before the crashes occur.
Namely, we analyze rounds 5, 10, 15, ... in the remainder.

Table 3: Number of hawk players per group

Group Treatment Treatment Treatment
Basic Fixed Link Fixed Action

1 1.83 2.50 2.50
2 2.17 1.17 1.83
3 2.50 2.17 1.50
4 2.67 2.67 2.00
5 2.50 2.67 2.17
6 1.17 2.17 2.33
7 1.67 1.17 2.17
8 1.67 2.50 1.83
9 1.67 1.83 1.83

Average 1.98 2.09 2.02

In the following we will analyze our experimental data in more detail (in
each treatment participated nine groups). In Table 3 we present separate for
each group the average number of participants choosing the hawk action. The
average number lies between 1 and 3 and does not significantly differ across
treatments4.

We find differences between the treatments, when we analyze the average
number of links per group (see Table 4)5. Here, we find significant differences
between Treatment Fixed Link and both other treatments.

4Comparison of average number of hawk players per group: Overall comparison (Kruskal-
Wallis test): test statistic=0.707, degrees of freedom=2, p-value=0.702. Pairwise Comparisons
(2-tailed Mann-Whitney-U test): Basic vs. Fixed Link: test statistic=33.500, p-value=0.531.
Fixed Link vs Fixed Action: test statistic=31.500, p-value=0.420. Basic vs. Fixed Action:
test statistic=37.500, p-value=0.789)

5Comparison of average number of links per group: Overall comparison (Kruskal-Wallis
test): test statistic=4.716, degrees of freedom=2, p-value=0.095. Pairwise Comparisons (2-
tailed Mann-Whitney-U test): Basic vs. Fixed Link: test statistic=19.500, p-value=0.063.
Fixed Link vs. Fixed Action: test statistic=19.500, p-value=0.063. Basic vs. Fixed Action:
test statistic=37.500, p-value=0.791)
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Table 4: Avg. number of links per group

Group Treatment Treatment Treatment
Basic Fixed Link Fixed Action

1 10.67 10.83 10.50
2 11.17 9.00 13.50
3 10.83 8.33 10.00
4 7.00 10.17 11.00
5 11.67 10.83 11.83
6 13.17 9.50 9.50
7 9.83 11.17 12.17
8 13.33 7.17 11.00
9 11.83 10.00 10.00

Average 11.06 9.67 11.06

From Table 5 we see that link errors are significantly6 different between all
treatments. Link errors occur when either an existing link generates a loss or
when a profitable link is not opened by anyone of the involved players. Obvi-
ously, participants in Treatment Fixed Action are performing best.

Table 5: Avg. link errors per period per group

Group Treatment Treatment Treatment
Basic Fixed Link Fixed Action

1 5.33 13.33 3.83
2 3.67 8.50 3.17
3 2.50 12.33 5.17
4 9.33 13.67 3.83
5 5.67 6.67 2.67
6 8.17 8.83 3.67
7 5.83 9.67 1.33
8 2.00 8.83 3.67
9 6.67 12.17 4.00

Average 5.46 10.44 3.48

Comparing the per capita payoffs (see Table 6) we do not see significant7

differences between Treatment Basic and Treatment Fixed Action. But there
exist significant differences between Treatment Fixed Link and the remaining

6Comparison of number of link errors per group: Overall Comparison (Kruskal-Wallis test):
test statistic=16.862, degrees of freedom=2, p-value=0.000. Pairwise Comparisons (2-tailed
Mann-Whitney-U test): Basic vs. Fixed Link: test statistic=5.500, p-value=0.002. Fixed
Link vs Fixed Action: test statistic=0.000, p-value=0.000. Basic vs. Fixed Action: test
statistic=21.000, p-value=0.084)

7Comparison of average payoff per group: Overall Comparison (Kruskal-Wallis test): test
statistic=14.234, degrees of freedom=2, p-value=0.001. Pairwise Comparisons (2-tailed Mann-
Whitney-U test): Basic vs. Fixed Link: test statistic=8.000, p-value=0.004. Fixed Link
vs Fixed Action: test statistic=0.000, p-value=0.000. Basic vs. Fixed Action: test statis-
tic=38.500, p-value=0.860)
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treatments. On average the individual per period payoff is larger in Treatment
Fixed Action than in the remaining treatments.

Table 6: Payoff per capita and per period

Group Treatment Treatment Treatment
Basic Fixed Link Fixed Action

1 112.22 71.95 110.28
2 124.72 85.00 130.83
3 123.06 72.78 103.33
4 71.67 75.28 111.67
5 111.67 97.50 128.06
6 112.50 84.17 100.83
7 105.83 89.17 141.95
8 147.78 68.06 118.33
9 112.50 74.45 113.33

Average 113.55 79.82 117.62

To sum up, all three treatments yield almost the same number of hawk play-
ers per population, namely about 2. First, given the theoretical predictions of
the Network Hawk Dove Game, these are less hawk players than we expect in

an Nash equilibrium. According to Lemma 3 n∗
X > (n−1)(a−b)

a−b+c−d = 2.5 has to hold
in equilibrium. Second, we would expect less if we only considered efficiency.
According to the discussion of efficiency in Section 2 the number of hawk play-
ers needs to be 0 or 1 in an efficient network. Aside this similarity, all three
treatments are different concerning the number of links. In Treatment Fixed
Link the number of links is significantly lower than in both other treatments.
The picture gets even clearer, when we analyze link errors. While the number
of link errors is maximal in Treatment Fixed Link, it is minimal in Treatment
Fixed Action and it lies between both other treatments in Treatment Basic. The
difference between the payoffs of the participants finally are only a consequence
of these differences.

5 Complexity Considerations

The experimental results are not inline with the theoretical predictions we de-
scribed in Section 2. In this section, we show that analyzing the game from
a complexity motivated perspective can better describe the observed behavior.
Therefore, we apply different complexity concepts to the Network Hawk Dove
Game. In particular, we discuss the impact of limiting the choice set of the
players on complexity. In our analysis, we apply different popular complexity
concepts. First, we use the concept of state complexity as suggested by A.
Rubinstein (Rubinstein 1986), before we apply space and time complexity the
most popular complexity concepts of computer scientists.
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5.1 State Complexity

In this section, we calculate the state complexity for the Network Hawk Dove
Game based on the intuition described by Salant ((Yuval Salant 2011)). Ac-
cording to him, the ”state compexity of a given choice behavior is the minimal
number of states needed to implement that behavior”. In this sense, we can cal-
culate the minimal state complexity of a strategy playing the Nash Equilibrium
in the Network Hawk Dove Game.

Proposition 1 The state complexity of a machine playing the best response in
a Network Hawk Dove Game cannot fall bellow 22(n−1).

In the stage game of a Network Hawk Dove Game, a player has to consider
two aspects of his fellow players: (1) The n−1 actions of all fellow players, as this
defines which action the player has to play. (2) For all n−1 potential links from
the fellow players towards him, he has to know whether they are established or
not, to decide whether he should establish a link towards the fellow player or
not. As the Hawk Dove Game is a bimatrix game, i.e. each player can choose
from two actions, there exist 2n−1 possible action combinations (1). The number
of link combinations (2) also is 2n−1 as each link has two possible states, i.e.
existing and not existing. Therefore, a machine deriving best replies to both
aspects has the state complexity of at least 22(n−1) = 2n−1 ·2n−1. Any deviation
from a strategy playing the best response to the behavior of the fellow players in
the previous period, i.e. by considering the history of play or the links between
fellow players, leads to a higher state complexity of the machine.

This result also holds, if the strategy set is limited for some periods, i.e. if
in some periods participants only choose their actions or their links.

Proposition 2 The state complexity of a strategy does not change, if the par-
ticipants only choose links or actions in some periods.

If players in one period only select their links, the player have to consider
the n− 1 action choices of their fellow players, as a player using a hawk action
will only establish links to doves and a player using a dove action will only
establish links to hawks. Aside this, the player has to consider for all their n−1
fellow players, whether they established a link towards him or not. To determine
whether he should establish an additional link or not. This results in a state
complexity of 22(n−1) following the arguments in the proof of Proposition 1.
Players only selecting their actions have to consider the same aspects. They
have to check whether a (incoming or outgoing) link to each of the n− 1 fellow
players exists and for each linked fellow player which action to use. Each player
is linked to a maximum of n − 1 fellow players yielding a state complexity of
22(n−1) following the arguments in the preceding proof.

To sum up, the state complexity of the Network Hawk Dove Game is 2n−1

and does not change, if the strategy set of a player is limited.

5.2 Space Complexity

We now apply the concept of space complexity to the decision situation of the
Network Hawk Dove Game. In our analysis, we focus on the worst case scenario
as is common when describing complexity theoretic results.
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Proposition 3 If participants in a Network Hawk Dove Game simultaneously
choose their actions and their links, the space complexity of identifying an equi-
librium is O(2(n− 1)) = O(n).

According to Lemma 3, in equilibrium three conditions have to be met. From
the perspective of each player i, he has to (1) establish links to fulfill conditions
(a) and (b), and he has to (2) choose his action to fulfill condition (c). Choosing
the action [2] depends on the number of other participants playing the hawk
action (nX). To derive nX the player has to calculate a belief concerning the
action of each other player. Building adequate links [1] depends on the actions
the player chose. Given he plays the dove action, he needs to distinguish whether
one of the nY other dove players opened a link towards him. If no link was
established, he would have to establish the link himself. All other links are
determined by the corresponding actions. To choose the own action [2] the
player has to derive the action of each fellow player, i.e. whether the fellow
player is a hawk or a dove. The space complexity is O(n − 1). For building
adequate links[1] player i has to know whether an incoming link (j, i) exists
for any player j using the dove action. In the worst case all other players
are doves. Hence, the space complexity of this step is O(n − 1). The overall
space complexity for playing the best response to a given strategy profile is
O(n− 1) +O(n− 1) = O(2(n− 1)) = O(n)

Proposition 4 If players repeatedly participate in a Network Hawk Dove Game
for one period and the Fixed Action Game for t periods afterwards, the space
complexity of identifying an equilibrium is O( 1

t+12(n − 1) + t
t+1 (n − 1)) =

O( t+2
t+1 (n− 1)) = O(n).

In the equilibrium of the Fixed Action Network Hawk Dove Game conditions
(a) and (b) of Lemma 1 are both fulfilled by choosing adequate links. As dis-
cussed in the proof of Proposition 3, the space complexity for choosing adequate
links is O(n− 1). Hence, in t

t+1 of all periods the complexity of identifying an

equilibrium is O(n− 1), while it is O(2(n− 1)) in 1
t+1 of all periods. In sum the

space complexity is O( 2
t+1 (n− 1) + t

t+1 (n− 1)) = O( t+2
t+1 (n− 1)) = O(n).

Proposition 5 If players repeatedly participate in a Network Hawk Dove Game
for one period and the Fixed Link Game for t periods afterwards, the space
complexity of identifying an equilibrium is O( 1

t+1 (n)(n−1)+ t
t+1n−1) = O(n2).

In the equilibrium of the Fixed Link Game conditions (a) and (b) of Lemma 2
are both fulfilled by choosing the adequate action. To do so, each player has to
consider all other players in his neighborhood and calculate beliefs concerning
the strategies they play. As described in the proof of Proposition 3 a player
can do this in O(n− 1), if an equilibrium was reached in the preceding Network
Hawk Dove Game. If in the preceding Network Hawk Dove Game no equilibrium
was reached, the complexity of this step increases. It is even possible, that no
equilibrium inline with Lemma 3 can be reached. E.g. think of a network in
which all players are organized in a circle with one incoming and one outgoing
link. An equilibrium according Lemma 3 could not be reached, as all players
would have to play the dove action (hawk players only have outgoing links
in equilibrium) which contradicts condition (c) of Lemma 3. Hence, in the
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Network Hawk Dove Game, we expect players to focus on their links, as they
cannot correct action errors during subsequent periods. As we have discussed
in conditions (a) and (b) of Lemma 3, establishing links to other players is the
immediate consequence of the actions all other players and oneself have chosen.
As each player i knows this, he has to consider action optimizations during all
subsequent t periods. As this action optimizations are the consequence of the
links of all other players, he has to predict all links between all other players.
Per link (j, k) player i with {j, k|i �= j ∨ i �= k ∨ j �= k} has to derive one
belief. In the whole network up to (n− 1)(n− 1) links between players j, k can
exist. In addition, player i has to consider all incoming links (j, i) from players
j playing the dove action. In the worst case n − 1 such links exist. Hence the
space complexity of this period is O(n(n − 1)), while the overall complexity is
O( 1

t+1 (n)(n− 1) + t
t+1n− 1) = O(n2).

To summarize, concerning space complexity the three games differ. Fixing
the action choices of the players reduced space complexity, while fixing link
choices increases space complexity compared to the unmodified Network Hawk
Dove Game.

5.3 Time Complexity

Next, we derive time complexity of the decision situation of the Network Hawk
Dove Game and combinations of the Network Hawk Dove Game with both
versions of the game.

Proposition 6 All results concerning the space complexity of the different sce-
narios also hold for time complexity. I.e., simultaneous link and action choice
has a time complexity of O(n), determining links only has a time complexity of
O(n) and determining actions only has a time complexity of O(n2)

This result directly follows from the observation, that we deem deriving
strategy parameters has a complexity of O(1). As every parameter derived is
also memorized and therefore increases space complexity, both measures yield
equivalent results. Additional aggregation steps are independent of the size of
the input and are not considered in O-notation.

5.4 Discussion

Humans who face a list of different alternatives can choose their favored item
either by (1) satisficing or by (2) optimizing (H.A. Simon 1955). When optimiz-
ing (2) humans analyze all possible alternatives, compare them to each other
and choose the best, while they resort to one option which satisfies their ex-
pectations when resorting to satisfying (1). Both behavioral paradigms are well
known from marketing literature. As consequence from these “consumer types”,
namely optimizers and satisficers, marketing studies find that an increase of al-
ternatives leads to a decrease of well-being of the optimizers (Barry Schwartz,
Andrew Ward, John Monterosso, Sonja Lyubomirsky, Katherine White & Dar-
rin R. Lehman 2002). An online study (Tilottama G. Chowdhury, S. Ratneshwar
& Praggyan Mohanty 2008), confirms these results. In the study, participants
were asked to choose one gift from a list of different items within a limited
time frame. Participants played in two treatments, in one treatment with only
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few alternatives and one with many alternatives. Although both optimizers
and satisficers felt time pressure, when they faced many alternatives, maximiz-
ers evaluated more alternatives and felt regret for their choice more often than
satisfiers.

From the perspective of behavioral economists, humans find their choice by
resorting to satisficing. They have an expectation concerning an adequate alter-
native and choose the alternative beating this expectation, see e.g. (Reinhard
Selten 1998). In behavioral experiments participants choose one element from a
list of different alternatives. Therefore, they are informed concerning the value of
the alternative after choosing it. They can then decide whether to analyze a next
alternative or not. Each inspection has a fixed cost, representing the costs for an-
alyzing the corresponding alternative. Early work of the corresponding decision
situation shows (Anatol Rapoport & Amos Tversky 1970, Mark Pingle 1992)
that some participants stop analyzing alternatives earlier than predicted by
theory. A reason for this behavior might be the adaptation of expectations:
Participants who face alternatives which monotonically increase in value ana-
lyze fewer alternatives, than participants who face alternatives monotonically
decreasing (P Brickman 1972, Z Shapira & Itzhak Venezia 1981). That humans
search until their expectations are beaten is also supported by an experiment in
which human participants can return to an alternative they rejected in an ear-
lier period (C.A. Kogut 1990). In these experiments several participants chose
alternatives they have rejected in earlier periods. They probably adapted their
expectations concerning an adequate alternative making an alternative rejected
in earlier periods acceptable.

In other experiments this model was applied to job search (JamesC. Cox &
RonaldL. Oaxaca 1989). Here, in contrast to preceding work, a decision maker
explicitly faces a loss the longer he searches for an adequate wage as his wages
are paid starting in the first period after the acceptance of an offer. As the
decision maker earns the selected wage alternative multiplied with the remain-
ing periods a fixed period exists after which further search is not beneficial.
The optimal decision is to stop searching before this “cut-off period” period
is reached. Experimental investigations of this model show that the time hu-
mans search for new jobs is inline with theoretical predictions for risk neutral
decision makers. The fact that (some) participants stop their searches to early
(Rapoport & Tversky 1970, Pingle 1992) could be attributed to such hidden
utility participants receive when having chosen one alternative earlier.

A more recent study (J Bearden & T Connolly 2007) discusses experiments
in which participants choose from a bundle of two goods instead of choosing
just one good in all previous studies. After finding out the quality of the first
good by investing part of their endowment, they can choose whether to investi-
gate the second good at an additional cost. Human participants played in two
different treatments: (1) when paying for finding out the quality of one good
they were informed about the exact value of the good (2) participants specified
a threshold value when interested in the quality of one good and where only
informed whether the value lie above or below the cut-off value. Participants
who where informed about the exact value (1) searched significantly less periods
until choosing their alternative than participants who had to specify thresholds
(2). This difference between treatments can be attributed to complexity aspects
of both alternatives. For the human decision maker memorizing exact values
for two goods is more complex then remembering two thresholds only he than
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compares to new alternatives and adapts from time to time. We argue that com-
plexity implies costs for the decision maker for each calculation. These “search
costs” also result in the shorter search observed in earlier experimental studies
(Rapoport & Tversky 1970, Pingle 1992).

As Salant (Salant 2011) discussed in his recent work, state complexity can
be used to justify that participants searching for certain elements of lists resort
to satisficing rather than optimizing. We argue that space complexity justifies
the behavior as well, and is inline with the experimental work cited above. Ac-
cording to this work, humans tend to have certain expectations concerning an
adequate outcome of an experiment. They adapt their expectations according
to the alternatives they have seen and choose the first alternative which justifies
their expectations. Salant has shown that the state complexity of satisficing is
lower than the state complexity of optimizing. The space complexity of satisfic-
ing is 1: The decision maker first analyzes the first alternative. According to this
alternative, he modifies his expectation concerning the value he can expect and
remembers it. Remembering exactly one expectation has a space complexity of
1. Afterwards, he chooses the next alternative, compares it to his expectation
(without the need of additional space) and decides whether to continue or not.
If he continues, he modifies his expectation, i.e. he overwrites his current ex-
pectation needing no more memory, and starts over again. Otherwise he stops.
Optimizing behavior on the other hand has a space complexity of 2. When
traversing through the list, the decision maker has to remember both the value
of the best alternative seen to date and the position of the alternative in the
list, requiring two memory slots.

6 Summary

In this paper, we present theoretical and experimental results concerning the
Network Hawk Dove Game. Our treatments differ in the stage games partici-
pants play. While in all treatments periods exist in which all participants can
choose both actions and links, in one treatment we let participants only choose
actions in some periods and in another treatment we let participants only choose
links in some periods. Although this modification has no impact on theoretical
equilibrium predictions, the behavior of participants changes dramatically. If
participants only choose links, they faster coordinate towards the equilibrium,
while they find it more difficult to coordinate towards an equilibrium if they
only choose actions compare to the baseline treatment, in which both aspects
are chosen simultaneously. We attribute the observed differences to the space
complexity of the corresponding decision making processes. Therefore, we de-
rive the space complexity of all three treatments and show that the experimental
results are inline with the complexity theoretic predictions.
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