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Integrated Order Picking and Vehicle Routing
with Due Dates

D. Schubert, A. Scholz, G. Wischer

Abstract

Supermarkets typically order their goods from a centrally located distribution center (warechouse). Each
order that the warehouse receives is characterized by the requested items, the location of the respective
supermarket and a due date by which the items have to be delivered. For processing an order, a human
operator (order picker) retrieves the requested items from their storage locations in the warehouse first.
The items are then available for shipment and loaded on the vehicle which performs the tour including
the respective location of the supermarket. Whether and to which extent a due date is violated (tardiness)
depends on the composition of the tours, the corresponding routes and the start dates of the tours (vehicle
routing subproblem). The start date of a tour, however, is also affected by the assignment of orders to
pickers and the sequence according to which the orders are processed by the pickers (order picking
subproblem). Although both subproblems are closely interconnected, they have not been considered
simultaneously in the literature so far. In this paper, an iterated local search algorithm is designed for
the simultaneous solution of the subproblems. By means of extensive numerical experiments, it is shown
that the proposed approach is able to generate high-quality solutions even for large instances. Furthermore,
the economic benefits of an integrated solution are investigated. Problem classes are identified, where the
sequential solution of the subproblems leads to acceptable results, and it is pointed out in which cases an

integrated solution is inevitable.
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2 Integrated Order Picking and Vehicle Routing with Due Dates

1 Introduction

Supermarkets are typically supplied once per workday (DVZ, 2013) from a centrally located distribution
center (warehouse) with perishable goods. When the warehouse has received a certain number of orders
from the supermarkets, the orders are assigned to human operators (order pickers) who retrieve the
respective items from their storage locations. Each order picker processes the orders one by one in a
particular sequence. All items belonging to an order are grouped together on transport devices like pallets
or boxes and then, together with the items from other orders, loaded on vehicles (trucks) which deliver
the goods to the respective supermarkets. This gives rise to a vehicle routing problem, namely how the
items of the various orders are to be assigned to vehicles and in which sequence the supermarkets are to
be visited on each tour. The solution to the vehicle routing problem determines the actual delivery dates,
i.e. the points in time when each supermarket is being served. However, a vehicle can only leave from
the warehouse and the respective tour can only be started when the items of all orders allocated to the
tour have been retrieved completely. Thus, the actual delivery dates are also affected by the assignment

of orders to order pickers and the sequence in which the orders are processed.

In practice, distribution centers and supermarkets have agreed on deadlines by which the ordered items
have to be delivered. For supermarkets, complying with such deadlines is of uttermost importance as
only very limited safety stocks exist and empty shelves will result in clients satisfying their demands
at competitor outlets. For the distribution centers, a violation of the deadlines will, therefore, result in
— often heavy — fines or even in the loss of customers if the deadlines are violated more permanently.
However, due to short response times which have also been agreed between distribution centers and
supermarkets, deadlines are often difficult to meet. Thus, deadlines will not only have to be considered for
the determination of vehicle tours but also for the assignment of orders to order pickers and the scheduling
of the orders. Consequently, dispatchers of the picking and shipping processes in warehouses are
confronted with a complex decision problem. Given a set of orders from supermarkets and corresponding
deadlines, it has to be decided (1) how these orders have to be assigned to order pickers, (2) how the
orders assigned to each order picker have to be sequenced, (3) how the orders have to be allocated
to vehicles, and (4) in which sequence the supermarkets should be visited by each vehicle such that
the violation of the deadlines is minimized. We will refer to this problem as the order assignment and

sequencing, and vehicle routing problem (OASVRP).

So far, both in literature and in practice of warehouse management and control, the OASVRP has not
been dealt with holistically. Instead, the order assignment and the order sequencing problem on the one
hand and the vehicle routing problem, on the other hand, are treated and solved separately (Schmid et
al., 2013). With respect to the previously sketched interdependencies between these problems, it can be
expected, though, that an integrative solution approach to the OASVRP can provide a significant source
of the reduction of costs and improved customer service by allowing for an improved compliance with
given delivery deadlines. Our goal, therefore, is twofold: First, we intend to present a solution approach
to the OASVRP which provides high-quality solutions within an acceptable amount of computing time.

Since the above-mentioned subproblems are NP-hard already, we concentrate on a heuristic solution
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approach. In particular, an iterated local search algorithm is proposed. This type of metaheuristic is
chosen since it has already been proven to provide excellent results for other challenging optimization
problems in warehouse management. Second, by means of this algorithm, we will analyze whether, under

which conditions, and to what extent benefits arise from dealing with the OASVRP holistically.

Special attention will be given to the fact that in practice large problem instances have to be solved.
For instance, the EDEKA group Minden-Hannover, a large cooperative of independent supermarkets in
Germany, serves 1513 supermarkets from nine warehouses (EDEKA, 2017), i.e. each warehouse has to

provide goods for more than 150 customers on average.

The remainder of the paper is organized as follows: In Section 2, the OASVRP will be stated in greater
detail. The related literature will be reviewed in Section 3. Section 4 comprises the presentation of the
proposed iterated local search approach, where the generation of an initial solution, the structure of the
neighborhoods used within the improvement phase and the design of the perturbation phase will be
described in particular. Section 5 is devoted to the numerical experiments which have been carried out
in order to evaluate the performance of the proposed algorithm but also in order to identify the benefits
resulting from a holistic approach to the OASVRP. The paper concludes with a summary and an outlook

on further research (Section 6).

2 Problem description

The order assignment and sequencing, and vehicle routing problem (OASVRP), which will be described
in this section, deals with picking requested items from a warehouse and delivering them to the respective
customers. Let a set of orders be given, each of which specifying certain items and the corresponding
demands from a particular customer. Furthermore, each order has been assigned a deadline (due date)
according to which the items have to be received by the customer. The items of each order have to
be shipped as a unit, split deliveries are not permitted. In order to make a customer order available for
shipping, the requested items have to be collected from the warehouse. Each customer order is processed

separately, i.e. it may not be merged (batched) with other customer orders.

Human operators (order pickers) walk or ride through the warehouse, retrieving the items from known
storage locations. Picking is performed on (picker) tours through the warehouse, i.e. each order picker
starts from the depot, visits the locations of the items to be collected and, afterwards, returns to the depot
where he/she deposits the collected items. The distance which has to be covered for collecting all items
of an order and, correspondingly, the time, which is required to do so, is dependent on the sequence
according to which the order picker visits the locations. The determination of the sequence is part of
the picker routing problem. Thus, a solution to the picker routing problem, e.g. obtained by application
of so-called routing strategies (Roodbergen, 2001), gives the processing time of an order, i.e. the time
which passes from the moment the order picker leaves the depot until the moment he/she returns to the
depot. As customer orders are processed separately, the processing times can be computed in advance

and assumed to be given.
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The number of order pickers is limited. Thus, each order picker will have to process several orders in
sequence. When all items of an order have been collected and forwarded to the depot by a picker, the
order is considered as finalized and available for shipping. The point in time when an order is finalized
will be denoted as the release date of an order. It is determined by its processing time and the sum of the
processing times of the orders which have been processed before by the respective order picker. In other
words, the release date of an order is dependent on how the orders are assigned to order pickers and how

they are scheduled.

A fleet of homogeneous vehicles is based at the warehouse. The vehicles perform tours from the
warehouse to the customer locations and back on which the requested items are delivered to the customers.
Thus, for each vehicle tour, it has to be decided which customers should be served and in which sequence
they should be visited. Each tour is started by loading an available vehicle with the items requested by
the customers assigned to the respective tour. Only items from orders finalized for shipping may be
loaded, and all items of an order must be loaded completely on the same vehicle. The customer locations
are visited one after another and the respective requested items are unloaded. Service times have to be
taken into account for the loading operations at the warehouse as well as for the unloading operations at
the customer locations. The length of a tour (i.e. its duration) can then be defined as the sum of all service
times required at the warehouse and at the customer locations visited, plus the travel times needed by the
vehicle for moving from the warehouse to the first customer location, between the customer locations,
and from the last customer location back to the warehouse. It is limited by a driving time constraint
(Prescott-Gagnon et al., 2010). The point in time when a vehicle returns to the warehouse after having

visited all customers of a tour will be denoted as the completion date of this tour.

Loading of a vehicle for a particular tour could be started as soon as picking of all orders which have
been assigned to the tour has been finalized. However, the number of vehicles is limited, and vehicles
may have to perform multiple tours. Loading of the orders for a particular tour, thus, may have to wait
until the vehicle has returned from a previous tour. The start date of a tour is correspondingly defined as
the maximum of the release dates of all orders assigned to the tour and the completion date of the tour

previously performed by the vehicle.

Each customer order is characterized by a certain due date, which has been agreed on by the warehouse
and the customer. The point in time when the requested items of a customer order are actually unloaded
at the customer location will be named the delivery date of the order. An order which has not been
received by the customer by the due date results in customer dissatisfaction, fines or even in the loss of
the customer if such delays happen to occur over a longer period of time. Complying with agreed due
dates, therefore, is of uttermost importance to the economic success of distribution warehouses and will
provide the core criterion for the evaluation of how the warehouse manages to process customer orders.
Since the consequences of delayed deliveries are often dependent on the length of the delays, we will
refer to the total tardiness of all customer orders here (also see, e.g., Ullrich (2013) who have used the
total tardiness as an evaluation criterion in similar problem settings). In case that the due date of an order

is not met, its tardiness equals the difference between the delivery date and the due date. If the order is
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delivered in time, the tardiness of the order amounts to zero. Then, the total tardiness of a set of customer

orders equals the sum of the tardiness of all orders in the set.

The OASVRP can now be stated. Let the following be given:

* a set of customers and their locations, a limited number of order pickers, and a homogeneous fleet

of vehicles,
* a set of customer orders with agreed due dates and (picking) processing times,
* travel times between the customer locations and between the warehouse and the customer locations,
* a limit on the tour length,

* a service time required for loading the vehicles at the warehouse and a service time required for

unloading the vehicles at the customer locations.

The following six questions have then to be answered (simultaneously) such that the total tardiness of

all customer orders is minimized and the given limit on the tour length is not exceeded:

1) For each customer order, to which order picker should it be assigned?

2) For each order picker, in which sequence should the assigned customer orders be processed?
3) For each customer location, to which tour should it be assigned?

4) For each tour, in which sequence should the assigned customer locations be visited?

5) For each tour, to which vehicle should the tour be assigned?

6) For each vehicle, in which sequence should the tours assigned to the vehicle be processed?

Fig. 1 illustrates a solution of an instance of the OASVRP with nine customer orders, two pickers and
two vehicles. Fig. 1a depicts the temporal aspects by means of a Gantt chart; it further demonstrates
the assignment of customer orders to order pickers and the sequence according to which orders are
processed, as well as the assignment of tours to vehicles and the sequence according to which the tours
are performed. Picker #1 processes customer order #1 first, then continues with order #2, order #3 and
order #5. Correspondingly, picker #2 starts with processing customer order #6, followed by orders #7, #4,
#8, and #9. The (picking) processing time of each order is represented by the length of the corresponding

rectangle. The right end of each rectangle provides the release date of the corresponding order.

Four tours have been built for delivering the requested items to the customers. Fig. 1b provides a graph
of the corresponding routes. From Fig. la it can be taken that each vehicle executes two tours. E.g.,
vehicle #1 visits customer #1 first and then proceeds to customer #2 on a first tour; on a second tour
customers #9 and #3 are visited. The length of each rectangle represents the time which is needed by
the vehicle for traveling from the warehouse or a previous customer to the respective customer location
plus the service time for unloading the vehicle at the customer location. The rectangle at the beginning
of each tour indicates the service time for loading the vehicle at the warehouse, while a rectangle labeled

with 0 represents a trip of the vehicle from the last customer of the tour back to the warehouse.
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Fig. 1a also demonstrates that a tour cannot be started before all corresponding orders have been finalized
at the warehouse. E.g., loading of vehicle #1 for the first tour (1, 2) starts as soon as picking of customer
orders #1 and #2 has been completed. After having visited customer #2, vehicle #1 returns to the
warehouse where it remains idle until picking of the last order of its second tour has been finalized.
Loading of vehicle #1 for the second tour (9, 3) commences when order #9 has been provided. The first
tour (7, 8, 6) of vehicle #2 cannot be started before picking of the last order (order #8) has been finalized.
While this tour is being carried out, picking of all orders of the second tour (4, 5) is completed. Thus,

loading of vehicle #2 can immediately be started upon its return to the warehouse from the first tour.

picker #1
picker #2

vehicle #1

vehicle #2

a) Assignments and sequences b) Tours and routes

Fig. 1: Example solution

We note that the OASVRP is actually composed of two subproblems, namely an order assignment and
sequencing problem (OASP), where customer orders have to be assigned to order pickers and sequences
have to be determined in which the orders should be processed, and a vehicle routing problem (VRP),
where the vehicles may perform multiple tours and release dates and due dates have to be considered. The
interface between these two problems is provided by the release dates of the orders on the one hand and
the start dates of the tours on the other hand. Before we introduce a solution approach to the OASVRP,
we will review the literature related to the two subproblems and the OASVRP.

3 Literature review

3.1 Order assignment and sequencing problem

If we assume that customers are served individually and not on a tour together with other customers, then
the time that it takes to transport the requested items from the depot to a customer is fixed and the latest
release date of each customer order could be computed from the given due dates. This gives rise to the
order assignment and sequencing problem which can be stated as follows: Let a set of customer orders
with (latest) release dates and processing times, and a limited number of order pickers be given. How
should the customer orders be assigned to the order pickers and in which sequence should the assigned

customer orders be processed by each order picker such that the total tardiness of all orders is minimized?

To the best of our knowledge, the OASP has not been addressed in the context of order picking so far.
However, the OASP is equivalent to the Identical Parallel Machine Problem (IPMP) from scheduling

(Pinedo, 2016), where the customer orders are processed by machines instead of order pickers.

The IPMP is known to be NP-hard (Pinedo, 2016) and only a few exact solution approaches are available.
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The first exact approach, a dynamic programming-based algorithm, was introduced by Gupta & Maykut
(1973). Branch and bound algorithms were proposed by Azizoglu & Kirca (1998), Yalaoui & Chu (2002)
and Shim & Kim (2007) which managed to solve problems with up to 15 customer orders and three

machines, 20 customer orders and two machines, and 30 customer orders and five machines, respectively.

Due to the fact that exact algorithms can only deal with small-sized problems, heuristic approaches have
been developed for solving problems of practical size. In particular, priority rule-based algorithms (Ho
& Chang, 1991) have been introduced, where customer orders are sorted first according to a priority
rule and then assigned one by one to the next available machine. The priority of a customer order can
be dependent on its due date, on its processing time and/or on the ratio between the average processing
time and the average due date. Alidace & Rosa (1997) extended the modified-due-date (MDD) rule for
the single machine problem proposed by Baker & Bertrand (1982). The MDD rule combines elements
of the earliest-due-date (EDD) rule, where priority values of orders increase with a decreasing due date,
and the shortest-processing-time rule, according to which higher priorities are assigned to orders with
shorter processing times. Other approaches than priority-rule-based algorithms have been proposed by
Koulamas (1997), who designed a decomposition approach as well as a hybrid simulated annealing
algorithm. According to Ullrich (2013), the current state-of-the-art heuristic has been developed by
Biskup et al. (2008). In this approach, customer orders are first sorted according to the EDD rule. Several
incomplete initial solutions are then generated, where each initial solution is iteratively completed. In
each iteration, exactly one non-assigned customer order is inserted into the partial solution. For each
machine, one customer order is selected according to the MDD rule, resulting in a set of potentially
assignable customer orders. One customer order from this set is then selected and optimally inserted into
the partial solution.

3.2 Vehicle routing problems with multiple use of vehicles, release dates

and due dates

The second subproblem of the OASVRP deals with the determination of routes for the vehicles which
are used for delivering the requested items to the customers after finalized orders have been provided at
the warehouse. It represents a variant of the classic vehicle routing problem where each customer order
is characterized by a release date, i.e. a point in time when it becomes available for shipment at the depot,
and a due date, i.e. the point in time by which it should have been received at the customer location. A
set of homogeneous vehicles is available for transporting the requested items to the customers. Several
customer locations may be visited on each tour and the vehicles may be used for multiple tours; however,
the length of each tour is limited.

A VRP with multiple use of vehicles and a tour length constraint has been introduced by Fleischmann
(1990). He extended the classic capacitated vehicle routing problem and designed a savings based
heuristic. Taillard et al. (1996) and Brandao & Mercer (1997) proposed tabu search algorithms in order
to solve the VRP with multiple use of vehicles. A constructive heuristic has been introduced by Petch &
Salhi (2004), and Olivera & Viera (2007) suggested an extended tabu search approach to this problem.
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For the VRP with hard time windows and multiple use of one vehicle, Azi et al. (2007) proposed an
exact algorithm. Azi et al. (2010) extended this work to the case of multiple vehicles. They suggested
a branch-and-price algorithm that is able to solve instances with up to 50 customers. More recently,
Azi et al. (2014) designed an adaptive large neighborhood search algorithm for the heuristic solution of

large-sized instances.

A VRP with release dates has been considered by Cattaruzza et al. (2016). They designed a genetic

algorithm for the vehicle routing problem with hard time windows and release dates.

Due dates can be considered as a special case of time windows in which the lower bound is sufficiently
small and the upper bound of the time window is a soft constraint. Taillard et al. (1997) suggested a tabu
search algorithm for a VRP with a hard constraint regarding the lower bound and a soft constraint with
respect to the upper bound of the time window. For the VRP with soft time windows, Chiang & Russell
(2004) and Fu et al. (2008) designed tabu search algorithms. Liberatore et al. (2011) also considered the
VRP with soft time windows and developed a branch-and-price algorithm.

3.3 Integrated scheduling and vehicle routing problems

As mentioned before, the OASP is equivalent to the IPMP. This scheduling problem has also been
considered in conjunction with distribution problems which involve routing decisions. Table 1 provides
an overview of publications related to such integrated scheduling and vehicle routing problems (ISVRP).
(We refer to Chen (2010) for a very detailed review.) The second column of the table depicts the number
of machines considered in the scheduling subproblem. The third, fourth and fifth column refer to
the routing subproblem. The third column provides the number of available vehicles, while the entry
“infinite” indicates that a sufficiently large number of vehicles has been assumed. The fourth column
indicates whether each vehicle may only perform a single tour or whether it can be used for multiple
tours, while the fifth column informs whether a limit on the length of each tour has been considered.

Table 1: Integrated scheduling and vehicle routing problems

reference # machines # vehicles use of vehicles tour length
Hurter & Van Buer (1996) single infinite single unlimited
Van Buer et al. (1999) single intinite multiple limited
Chen & Vairaktarakis (2005) multiple infinite single unlimited
Li et al. (2005) single single multiple unlimited
Low et al. (2013) single multiple single unlimited
Low et al. (2014) single infinite single unlimited
Lietal. (2016) single infinite single unlimited
Ullrich (2013) multiple multiple multiple unlimited
this paper (OASVRP) multiple multiple multiple limited

Hurter & Van Buer (1996) were the first who considered an ISVRP (Gao et al., 2015). They investigated a
newspaper production and distribution problem. Different types of newspapers have to be delivered from
a distribution center to drop-off points. All drop-off points have to be served by an identical deadline.
The delivery of the newspapers is performed on tours by a fleet of homogeneous vehicles, but only one

type of newspapers can be included in a single tour. Van Buer et al. (1999) extended this problem by
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allowing multiple tours per vehicle and multiple types of newspapers per tour. Chen & Vairaktarakis
(2005) studied several variants of the ISVRP with an unrestricted number of homogeneous vehicles.
Each vehicle is allowed to perform at most one tour and can visit a restricted number of locations per
tour. In the production subproblem, both a single machine and multiple machines are assumed. Li et
al. (2005) considered an ISVRP, where all customer orders are processed by a single machine. A single
vehicle is available which may perform multiple tours. Low et al. (2013) investigated an ISVRP which
integrates a scheduling problem with one machine and a VRP with hard time windows. This problem
was extended by Low et al. (2014) who took a fleet of heterogeneous vehicles into account. Moreover,
instead of hard time windows, soft time windows were assumed. The work of Li et al. (2016) combines
a scheduling problem including a single machine with routing decisions including an unlimited number
of homogeneous vehicles. In Ullrich (2013), multiple machines are used in the production process and
a limited number of heterogeneous vehicles is used for the delivery of customer orders. For machines
and vehicles, ready dates are given, i.e. the corresponding machine or vehicle must not necessarily be

available at the beginning of the planning horizon.

As can be seen from Table 1, the problem considered by Ullrich (2013) resembles the OASVRP dealt with
in this paper, except for the limitation of the tour lengths. The author proposed a genetic algorithm and
investigated the benefits from an integrated solution of the scheduling and routing problems. However,
the performance of the algorithm deteriorates drastically with an increasing number of customer orders.
E.g., for instances with 70 orders, the quality of solutions provided by the genetic algorithm is hardly

superior to the quality of solutions generated by a simple construction procedure (Ullrich, 2013, p. 163).

Apart from incorporating the tour length limitation, we will, therefore, pay particular attention to the
development of an algorithm for the OASVRP which is capable of providing high-quality solutions to
practical-sized problem instances in reasonable computing times. The algorithm, based on an iterated

local search approach, will be presented in the next section.

4 lterated local search approach

4.1 General principle

Iterated local search (ILS) has successfully been adapted to many kinds of optimization problems. It
can be considered as the state-of-the-art algorithm for operations research problems, among others for
various types of vehicle routing problems (Vidal et al., 2013), for single machine (Grosso et al., 2004;
Congram et al., 2002) and identical parallel machine scheduling problems (Brucker et al., 1996, 1997)
as well as for the order batching and sequencing problem (Henn & Schmid, 2013).

The general principle of ILS can be described as follows (Lourenco et al., 2010): Starting with an initial
solution oj,;, an improvement phase is executed in order to determine a local optimum, resulting in
the first incumbent solution o;,. and, at the same time, the best solution ¢* found so far. Perturbation

and improvement phases are then alternately performed until a termination condition is met. In the
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perturbation phase, the incumbent solution oy, is randomly modified in order to avoid the ILS getting
stuck in a local optimum. Based on the modified solution, a (new) local optimum is determined by
means of the improvement phase. If the resulting solution represents a new best solution, then the best
solution o* as well as the incumbent solution oy,. are updated. Otherwise, ¢* remains unchanged and
Oimc 18 only altered if an acceptance condition is met. Depending on the acceptance condition, it may
be possible to accept a solution with a worse objective function value than the incumbent solution. A
pseudocode of the ILS approach is depicted below.

Algorithm 1 General principle of iterated local search

Input: problem data
Output: solution o* to the OASVRP and corresponding total tardiness f (o*)
generation of an initial solution ;,,;
Oine = improvement(c,;)
Obest = Tinc
while termination condition is not met do
¢ := perturbation(c ;)
o™ := improvement(c)

if f(0*) < f(0pest) then
Opest = 0"
end if
Oine = acceptance condition(o™*, 0;p.c)

end while

4.2 |Initial solution

For the generation of an initial solution, the OASVRP is divided into its two subproblems, which are
then solved sequentially. First, a solution to the VRP is constructed. Tours and corresponding routes
are generated by adapting the EDD rule originally designed for the [IPMP (Baker & Bertrand, 1981).
According to this rule, all customer orders are sorted in a non-descending order of the due dates. Then,
in this sequence, the orders are assigned to the vehicle which currently possesses the shortest total travel
time. More precisely, a customer order is assigned to the last position of the currently last route of the
vehicle chosen. A new tour is opened each time the maximum tour length would be exceeded. In order
to provide a feasible solution to the VRP, order release dates have to be taken into account. Regarding
the OASVRP, the release date of an order is defined by the point in time when the order is finalized
for shipment at the warehouse, which is not known at this stage of the algorithm. Therefore, release
dates are estimated by assuming that the number of order pickers is identical to the number of vehicles
and each order picker processes all orders assigned to a certain vehicle in the sequence provided by the
above-described modification of the EDD rule. Based on the estimated release dates, the start date of

each tour is determined. The estimated release dates are taken as (planned) start dates of the tours.

The solution of the VRP is then taken as input for the solution of the OASP which determines the release
dates of the orders. Regarding the OASVRP, picking of an order has to be finalized before the start date

of the tour in which it is included. In the context of the resulting OASP, the tardiness of an order is then



D. Schubert, A. Scholz, G. Wischer 11

defined as the non-negative difference between the (planned) start date of the corresponding tour and
the release date of the order. As mentioned in Section 3.1, the OASP is equivalent to the IPMP. Thus, in
order to solve this problem, the approach of Biskup et al. (2008) is applied.

If the approach of Biskup et al. (2008) leads to a solution with a total tardiness equal to 0, combining this
solution with the solution to the VRP results in a feasible solution to the OASVRP as well. Otherwise,
a tour including orders for which picking is completed after the (planned) start date of the tour has
to be postponed and the start dates of the respective tour and the subsequent tours are corrected
correspondingly. After having obtained a feasible solution, start dates may be updated in order to

ensure that each tour starts as early as possible.

4.3 Improvement phase

As has been explained in Section 2, solving the OASVRP involves six different types of decisions which
have to be taken simultaneously. Since a simple local search procedure will not be able to deal with
all aspects of the problem, a more complex improvement procedure will be used. In fact, a variable

neighborhood descent (VND) algorithm has been designed in order to tackle all decision types.

VND was first introduced in Hansen & Mladenovic (2001). In this approach, the solution space is
explored using a sequence of neighborhood structures N7, . .., Np. Starting with a solution o, a local
optimum regarding the first neighborhood structure ; is determined. If the resulting solution provides
a better objective function value than the best solution found so far, this solution becomes the new
best solution and N is explored again. Otherwise, the algorithm continues with exploring the next
neighborhood structure. Each time a local optimum represents a new best solution, the algorithm
continues with N;. The VND approach terminates when no improvement has been found in the last
neighborhood structure A7. In this case, the best solution o* is a local optimum with respect to all

neighborhood structures.

The improvement phase of the ILS approach presented in this paper consists of two VND algorithms,
dealing with decisions related to the VRP (VND_VRP) and the OASP (VND_ OASP), respectively. A

pseudocode of the improvement phase is given in Algorithm 2.

Algorithm 2 Improvement phase

Input: problem data, solution o with objective function value f(o)
Output: local optimum o*, f(c*)
do
c*fi=0
o := VND_VRP (o)
o := VND _OASP (o)
while f (o) < f(o")

Each VND algorithm deals with one subproblem only. This approach is chosen because of the structure of
the OASVRP. Decisions regarding the VRP only affect this subproblem. Moves related to these decisions
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can be performed quite easily. In contrast to that, any changes regarding the OASP have an impact on the
release dates of the orders and, therefore, such moves will also affect the start dates of the tours. Since
moves regarding the OASP affect both subproblems, their execution is much more time-consuming. As
a consequence, a VND approach is first applied to the VRP and modifications to solutions of the OASP

are not carried out before a local optimum regarding the VRP has been found.
In the VND algorithm for the VRP, four neighborhood structures NY*F, ..., AVRP are contained:

NYRP: a consecutive sequence of orders is moved to another position of the same tour;

NYRP: two tours assigned to different vehicles are exchanged;

N'RP: a consecutive sequence of orders is moved to a tour assigned to another vehicle;

NYRP: a consecutive sequence of up to two orders is removed from a tour and it is assigned to the same

vehicle building a new tour.

The impact of moves performed in the VND VRP procedure is exemplified for the neighborhood
structure N'R? (see Fig. 2). Regarding NV}Y®?, a neighbor solution is constructed by first choosing a tour
assigned to a certain vehicle. A consecutive sequence of orders is then removed from the tour, i.e. the
tour is divided into two subsets. The first subset contains all orders which are still included in the tour.
No further changes will be performed to this tour. The second subset consisting of the removed orders
will form a new tour and will be assigned to another position of the same vehicle. The position is chosen

in such a way that the total tardiness is minimized.

solution before transformation solution after transformation
1 |2| 3 | 5 | picker #1 1 |2| 3 | 5 ‘
6| 7|4 8 9 picker #2 6[ 7 [4 8 )
S 0 vehicle #1 1 9 0
0 vehicle #2 6 ( 8 0 0
Ly >

time time

Fig. 2: Example of a move regarding neighborhood structure N,'RP

In the example depicted in Fig. 2, a possible move regarding N,;'*? is performed. The orders #7 and #8
are removed from the tour (7,8, 6) originally assigned to vehicle #2. The remaining tour only contains
order #6 and can now start much earlier as order #6 is processed by an order picker at the very beginning
of the planning horizon. The new tour (7, 8) is inserted as the second one for vehicle #2 and can be
started after order #8 has been provided. As can be seen from Fig. 2, the start date of this tour is identical
to the start date of the tour (7,8, 6) in the solution before the transformation. Obviously, the length of
the tour (7, 8) is shorter than the length of the tour (7,8, 6). Therefore, the subsequent tour (4, 5) can be

started earlier now, resulting in earlier delivery dates for both orders.

The moves included in the VND_VRP procedure affect the tours assigned to one (NYR? and NYRP)
or two (VYR and NV;'RP) vehicles. Tours assigned to other vehicles will remain unchanged, but also
decisions related to the OASP will not be affected. As mentioned before, moves changing the assignment
of customer orders to order pickers or the sequence according to which customer orders are processed by

an order picker are much more complex. Therefore, the VND OASP procedure includes the following
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two neighborhood structures only:

NOASP: an order is moved to another position of the same picker;

NEASP: two orders assigned to different pickers are exchanged.

In Fig. 3, an example of a move regarding V'’ 457 is depicted, where the assignment to the order pickers is
exchanged for orders #1 and #8. The release date of order #1 increases, resulting in a later start date of the
corresponding tour. The start date of the following tour (9, 3) is now determined by the completion date
of the tour (1, 2) instead of the release date of order #9. Consequently, the tour (9, 3) is also postponed.
Regarding vehicle #2, it can be seen that the start dates of the tours significantly decrease due to the

exchange of orders #1 and #8 because the release date of order #8 decreases.

solution before transformation solution after transformation
2] 3]s | picker #1 - BEER
6| 7 |4 8 9 picker #2 6| 7 |4 1|9
0 9 vehicle #1 [ $ 0
8 0 vehicle #2 8 6 | 0
Ly L
time time

Fig. 3: Example of a move regarding neighborhood structure A/9ASP

4.4 Perturbation phase

After a local optimum has been identified in the improvement phase, the solution is randomly modified
in the perturbation phase. The design of the perturbation phase is pivotal for the performance of an ILS
approach. If the modifications are too small, a further application of the improvement phase will result
in the same local optimum. If too many changes are applied to the local optimum, the promising part
of the solution space is left and the ILS algorithm turns into an improvement procedure with multiple

random starts (Lourengo et al., 2010).

For the perturbation phase, we decided to use moves related to the OASP, as their impact on the solution
is expected to be larger than that of VRP moves (see the previous subsection). A move in the perturbation
phase is defined by the exchange of two sequences of consecutive customer orders which are assigned
to different order pickers (see Fig. 4). The lengths of the two sequences are chosen randomly and may
be different from each other. The maximum length of a sequence determines the degree of modification

performed in the perturbation phase.

solution before transformation solution after transformation
1 12| 3 5 picker #1 1 8 9
6|7 |4 8 9 picker#2 [6| 7 |4|2| 3 5
vehicle #1
i vehicle #2 i
Ly Ly
time time

Fig. 4: Example of a move in the perturbation phase
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In Fig. 4, three consecutive orders assigned to picker #1 are exchanged with two orders processed by
picker #2. Consequently, the release dates change for all of the five orders. This affects the start date of all
tours. Regarding vehicle #1, the first tour is postponed because of the increased release date of order #2.
Nevertheless, the subsequent tour (9, 3) is started earlier now. For vehicle #2, the transformation leads to
earlier start dates for both tours. The start date of tour (7, 8, 6) decreases due to the smaller release date
of order #8, and the subsequent tour can then be started earlier as well since its start date is determined

by the completion date of tour (7,8, 6).

4.5 Acceptance and termination condition

In addition to the perturbation phase, an adequate acceptance condition helps to overcome local optima. A
solution of inferior quality may be accepted if no improvements have been found for a certain number 7
of consecutive iterations and if the solution provides an objective function value not too far from the
objective function of the current best solution. The acceptance condition of our ILS was proposed by
Dueck & Scheuer (1990). According to this condition, a solution o is accepted if its objective function
value f (o) is not larger than (1 + «) - f (¢*), where f (c*) denotes the objective function value of the
current best solution ¢* and « is a parameter indicating the relative amount of deterioration allowed. At
the beginning of the algorithm, « is initialized by 0, i.e. a solution is only accepted if it represents an
improvement compared to the current best solution. Each time no solution is accepted for n consecutive
iterations, « is increased. Whenever the incumbent solution is updated, « is set to 0 again. Thus, the
longer the ILS algorithm gets stuck in a local optimum the higher the relative amount of deterioration
allowed gets. This type of acceptance condition has also been applied by Polacek et al. (2004) to a VRP
with time windows and multiple depots, by Tarantilis et al. (2004) to a VRP with a heterogeneous fleet
and by Henke et al. (2015) to a VRP with multiple compartments.

A time limit has been chosen as the termination condition. After each iteration, it is checked whether the
time limit has been exceeded. If this is the case, the ILS approach is terminated. Otherwise, at least one

additional iteration is performed.

5 Numerical experiments

5.1 Test problem instances and parameter settings

In order to evaluate the performance of the ILS algorithm as well as to determine the benefits from
solving the OASVREP as a holistic problem instead of dealing with the OASP and the VRP sequentially,
extensive numerical experiments have been conducted. Since the problem instances of Ullrich (2013)
were not available, new test problem instances have been generated. The generation of the instances
followed the procedures of Ullrich (2013) for the VRP and of Scholz et al. (2016) for the OASP.

For the numerical experiments, problem instances with 100 and 200 customer orders have been generated.

Instances of this size have also been used by Henn (2015) and Scholz et al. (2016) for different types
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of order picking problems and they are also considered as realistic problem sizes for VRPs (Desaulniers
et al., 2014). The customer orders are processed by 2, 3 or 5 order pickers in the warehouse. For the
determination of the processing times of the customer orders, a block layout with 10 picking aisles is
assumed for the picking area. A class-based procedure has been assumed for assigning the articles to the
storage locations (Henn, 2015; Scholz et al., 2016). The routes of the order pickers are constructed by
means of the S-shape strategy which represents the routing strategy most frequently used in practice
(Roodbergen, 2001). Processing times of orders will increase with an increasing number of blocks.

Instances with 1 block (short processing times) and 3 blocks (long processing times) are considered.

Identical to Ullrich (2013), the number of vehicles available for the delivery of the customer orders is set
either to 4, 6, 8 or 10. The respective customer locations are chosen randomly, while the corresponding
coordinates for the horizontal and vertical dimensions are selected from the interval [1, 100] for instances
including 100 customer orders and from [1, 150] for problems with 200 orders. The location of the
warehouse is fixed to the coordinates (50, 50) and (75, 75), respectively. The travel times are then defined
by the euclidean distances between the locations (Ullrich, 2013). The time for loading the vehicle (service
time at the depot) is set to 20 minutes, while 5 minutes are required for unloading the required items

(service time at a customer location). The maximum tour length is set to 8 hours.

Finally, a due date is assigned to each customer order. The due dates are determined based on the
procedure of Ullrich (2013). According to this procedure, the due dates are dependent on the number of
customer orders NV, the number of vehicles &', the number of order pickers M as well as on the processing
times p, (n = 1,..., N) of the orders and the travel and service times. Additionally, a parameter € is
introduced describing how difficult it is to meet the due dates. The due date of customer order n is then

a realization of the random variable D,, which is defined as follows (Ullrich, 2013):
Dn:pn+t0n+30+sn+F+A (1)

On the one hand, D, includes order-specific data such as the travel time ¢;, between the depot and
the location of customer n and the service time (s,,) at the customer location. Due to the integration
of the service time at the depot () as well as the random variables I" and A, general problem data
is included in the calculation on the other hand. I' and A are uniformly distributed over the discrete
NPn) (N/(K+ M))|} and {0,..., |0 (max,—1__npn)|}, respectively. In
the numerical experiments, 6 is set to 0.5 (tight due dates) and to 1.0 (loose due dates).

sets {0, ..., |0 (max,—;

,,,,,

The combination of all parameter values gives rise to 96 different problem classes. For each class, 48 test
problem instances have been generated, resulting in 4608 instances in total. The ILS algorithm has been
implemented using Visual Studio C++ 2015. The numerical experiments have been performed by means
of a Haswell system with up to 3.2 GHz and 16 GB RAM per core.

Regarding the ILS approach, the following settings have been chosen. The maximum length of a
sequence of consecutive orders exchanged is set to 5 for the perturbation phase. The parameter «

included in the acceptance criterion is increased by 0.1 after 50 consecutive iterations each without
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finding a new best solution. The time limit for the ILS has been fixed to 30 minutes for instances with

100 customer orders and to 60 minutes for problems with 200 orders.

5.2 Generation of upper bounds

As has been shown by Ullrich (2013), only very small problem instances can be solved to optimality
within a reasonable amount of computing time. Therefore, upper bounds are generated in order to
evaluate the performance of the ILS approach. In fact, three procedures for the determination of upper

bounds are applied.

As for the first procedure (Ullrich, 2013), each customer order is assumed to be served on a separate
tour. This assumption reduces the OASVRP to a hybrid flow shop problem with M parallel machines at
the first stage and K parallel machines at the second stage. Processing times at the first stage are given
by the processing times p, (n = 1,...,n) of the orders, while the times for delivering the customer
orders (given by sg + to, + tno + Sp) represent the processing times at the second stage (Ullrich, 2013).
This problem is then solved by applying the MDD rule which has been proven to perform quite well
for multiple stage hybrid flow shop problems with due dates (Brah, 1996). Ullrich (2013) compared the
solutions generated by a genetic algorithm to this upper bound and pointed out that the genetic algorithm
was not able to find solutions of superior quality for problem instances with 70 or more customer orders.
This observation indicates that the genetic algorithm does not perform well for those problems. Therefore,
in our experiments, this upper bound (U By) is used in order to identify whether the ILS approach is

suitable for dealing even with very large instances.

The general principle for the generation of the second upper bound (U Bs) was also proposed by Ullrich
(2013). He suggested to divide the problem into its two subproblems and then solve them one after
another to optimality. The author started with the VRP, continued with the OASP and got back again
to the VRP. The procedure then terminates since performing further iterations have proven not to lead
to significant improvements regarding the solution quality. Ullrich (2013) computed upper bounds of
this type for very small problem instances including 7 customer orders only. Therefore, in order to be
able to calculate the bounds for larger instances, we use the same principle but the subproblems are
solved heuristically. At first, the procedure for the determination of an initial solution (see Section 4.2)
is used, i.e. the VRP is solved and then the algorithm of Biskup et al. (2008) is applied to the OASP.
As suggested by Ullrich (2013), the VRP is then solved again. Here, the VND_ VRP procedure (see
Section 4.3) is applied. This procedure for the generation of an upper bound is much more complex than
the previous one, as a state-of-the-art algorithm is used for solving the OASP and a VND approach for
solving the VRP. Upper bounds of this second type are generated in order to determine the benefits from

dealing with the OASVRP as a holistic problem instead of solving the subproblems in sequence.

The determination of the third upper bound (U B3) also originates from the ILS approach. The initial
solution is constructed and one improvement phase of the ILS algorithm is performed. The quality of this
bound is at least as good as the quality of the second bound. The third bound is used for the investigation

of the impact of the perturbation phase on the quality of solutions provided by the ILS approach.
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5.3 Evaluation of the solution quality of the ILS algorithm

In Tables 2 and 3, the average total tardiness (tard;) in minutes is depicted for the upper bounds U B;
(¢ € {1,2,3}) as well as for the solutions provided by the ILS approach (tardy s) for problem classes
with 100 and 200 customer orders, respectively. Furthermore, the average improvements (imp,) [in %]
are presented in comparison to upper bound U B;. In the tables, K denotes the number of vehicles, B
represents the number of blocks and 6 is the parameter used for the generation of the due dates (see
Section 5.1).

Performance of the ILS algorithm for large-sized instances

Comparing the objective function values of solutions obtained by the ILS approach to the upper
bound U B, significant improvements regarding the total tardiness can be observed. On average, the
reduction ranges from 4.6% (100 orders, 2 pickers, ¢ = 0.5, B = 1, K = 10) to 94.0% (200 orders,
5 pickers, § = 1, B = 3, K = 4). The magnitude of the improvement varies very strongly between
different problem classes. This can be explained by the performance of the approach for generating U B; .
Application of the MDD rule leads to rather good solutions to the OASP. The VRP is solved on the basis
of the assumption that each customer is served on a separate tour. This assumption is not critical as long
as processing the orders in the warehouse consumes more time than the separate delivery of each order,
1.e. when many more vehicles than order pickers are available or when the processing times of the orders
are large in comparison to their travel times. Furthermore, the upper bound may have a good quality in

case of loose due dates.

Due to the increasing ratio between vehicles and order pickers, the amount of improvement decreases
with an increasing number of vehicles (75.4% for K = 4 and 32.6% for K = 10) and increases with
an increasing number of order pickers (30.6% for 2 pickers and 75.6% for 5 pickers). As has been
anticipated, these two parameters have the largest impact on the amount of improvement. If few vehicles
are available for the delivery, the solutions to the VRP can significantly be improved by serving several
customer orders on the same tour when the orders can be processed by many order pickers. Besides the
number of pickers and the number of vehicles, the number of blocks and the parameter § affect the amount
of improvement. An increasing number of blocks results in a reduction of the average improvement.
While the total tardiness can be reduced by 56.7% in a single-block layout, the improvement amounts
to 47.5% when the picking area is composed of three blocks. The reason can be found in the processing
times which increase when the picking area includes a larger number of blocks. Picking the orders gets
more time-consuming and the advantage of serving several customers on a single vehicle tour diminishes.
The amount of improvement also decreases with an increasing value of , as the bound can be improved
by 55.5% for # = 0.5 and by 47.7% for & = 1. Problem classes characterized by a large ¢ contain
instances with loose due dates. In this case, delivering more than one order per tour is not that important.
Thus, the quality of the bound increases and the amount of improvement obtained by application of the
ILS approach decreases. Furthermore, it can be observed that larger reductions of the total tardiness are

achieved for instances with a larger number of orders (43.8% for 100 orders and 60.4% for 200 orders).
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This can be explained by the fact that no advantage of the larger solution space is taken by the procedure
for the construction of the upper bound, whereas the number of moves performed in the improvement

phase of the ILS algorithm significantly increases with an increasing number of customer orders.

On average, across all problem classes, the first upper bound can be improved by 52.1%, which
demonstrates that significant reductions of the total tardiness are obtained. In contrast to the genetic
algorithm of Ullrich (2013), which is not able to significantly improve the upper bound for instances
including 70 or more customer orders, the proposed ILS algorithm results in serious improvements
even for very large instances. Furthermore, the impact of the parameters on the amount of improvement
matches the expectations based on the quality of the upper bound, which leads us to the conclusion that

the ILS algorithm is well designed.

Benefits of a holistic solution of the OASVRP

While the generation of the first upper bound makes use of two simple construction procedures, the
second bound is provided by application of a state-of-the-art algorithm to the OASP and a VND approach
to the VRP. Nevertheless, compared to the second upper bound, the ILS algorithm results in remarkable
improvements, which vary between 8.7% (200 orders, 2 pickers, § = 0.5, B = 3, K = 10) and 88.7%
(200 orders, 5 pickers,§ = 1, B = 3, K = 4). Over all problem classes, the total tardiness can be reduced
by 37.8% on average, which clearly demonstrates that solving the OASVRP as a holistic problem is

pivotal for obtaining high-quality solutions.

The results from the experiments indicate that a simultaneous solution of the OASP and the VRP is more
advantageous if the number of vehicles is not too large in comparison to the number of order pickers. If
few vehicles are available for the delivery of the orders, more orders will be contained in a single tour.
The start dates of the tours are then dependent on the release dates of several orders, i.e. the solution
of the VRP is strongly affected by the solution of the OASP and the other way round. If the number
of vehicles is very large, the tours include few or even a single order only. In this case, the VRP gets
less important and the OASP can be solved without taking the vehicle tours into account. A similar
argumentation holds for the impact of the number of blocks on the size of the improvement. Increasing
processing times caused by a larger number of blocks produces the same effect as a decreasing number
of order pickers does since fewer orders can be processed within the same amount of time. Thus, fewer
customers will be visited on a tour, decreasing the benefits from solving the subproblems simultaneously.
Regarding the number of customer orders, the results show that — what concerns the joint approach —
a larger number of orders provides more space for improvement, increasing the reduction of the total

tardiness by 8.3 percentage points (33.2% reduction for 100 orders and 41.5% reduction for 200 orders).

Impact of the perturbation phase on the solution quality

The third upper bound is obtained by application of the improvement phase to the solution provided by the
procedure for the generation of the second bound. The improvements obtained by the ILS approach range
between 6.2% (200 orders, 2 pickers, 0 € {0.5,1}, B = 3, K = 10) and 87.1% (200 orders, 5 pickers,
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0 =1, B =3, K = 4). On average, the improvement amounts to 32.5%, clearly demonstrating that
more than a simple improvement procedure is required for providing high-quality solutions to such a
complex problem. The application of the perturbation phase is pivotal in order to overcome local optima

and to guide the search to the promising part of the solution space.

The amount of improvement is mainly dependent on the number of order pickers and the number of
vehicles. Regarding the number of order pickers, it can be observed that the reduction of the total
tardiness, given by U Bs, gets much larger with an increasing number of pickers. In fact, the average
amount of reduction equals to 16.1% in the case of 2 pickers, while the total tardiness can be reduced
by 53.1% for problems including 5 pickers. This can be explained by the fact that the perturbation phase
exchanges randomly-chosen orders between two pickers. If 2 pickers are available only, the selection
of the order pickers is fixed. Thus, the probability that the perturbation phase leads to solutions already
investigated earlier is significantly increased in this case. Concerning the number of vehicles, the same
behavior can be observed as for the comparison with U By: If the number of vehicles gets very large in
comparison to the number of order pickers, many orders can be delivered on a separate tour. Thus, the
benefit from solving the OASP and the VRP simultaneously diminishes, which also reduces the range in
which improvements can be obtained. The impact of the processing times and the parameter 6 is much
less significant than the impact of the number of pickers and the number of vehicles. The amount of
improvement obtained by application of the ILS approach increases with decreasing processing times,
i.e. with a decreasing number of blocks, and an increasing value of §. Furthermore, larger improvements
are obtained for instances with a larger number of customer orders. While the total tardiness can be
reduced by 28.1% when 100 customers are considered, an average reduction of 37.8% is obtained for
instances with 200 orders. However, these results have to be taken carefully since much more computing

time is spent on solving instances including 200 orders by application of the ILS approach.

5.4 Considerations regarding computing times

The generation of the upper bounds requires a few seconds of computing time, whereas the computing
time of the ILS approach has been fixed to one hour for problem instances with 200 customer orders. The
improvements obtained in comparison to the bounds provides information on the benefits of applying
the ILS algorithm instead of using simple construction procedures or sequential solution approaches.
However, no reliable conclusions on the performance of the proposed ILS algorithm can be drawn from
the results. In particular, it is not known whether the time limit has appropriately been chosen. In Fig. 5,
information on the development of the average solution quality over time is given for instances from
three problem classes. Problem classes with 200 customer orders are considered, implying that the ILS
approach is terminated after one hour of computing time. For each point in time, Fig. 5 depicts the
relative deviation [in %] of the total tardiness provided by the best solution found after one hour from

the tardiness of the current best solution.

The first problem class (2 pickers, § = 0.5, B = 3, K = 10), which has been considered, is characterized
by very low improvements (6.2%) with respect to U Bs. After 10% of the total computing time, the
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tardiness provided by the current best solution can only be improved by 2% on average within the
remaining 90% of the computing time. The reason can be found in the design of the perturbation phase.
As mentioned before, fewer decisions have to be taken in the perturbation phase in the case of 2 pickers,
which significantly reduces the number of possible moves. For the second problem class (3 pickers,
0 =1, B =3, K =6), UBj3 can be improved by 38.0%, which can be interpreted as a fairly average
amount of improvement. In this case, the time limit of one hour seems to be chosen appropriately. The
total tardiness is reduced by 10% in the last 90% of the computing time, representing a significant amount
of improvement. Thus, the algorithm should not be stopped at an early stage. Furthermore, the algorithm
seems to converge as the reduction found amounts to 1.1% for the last 50% and 0.1% for the last 10% of
the total computing time. The largest improvements are obtained for the problem class (5 pickers, § = 1,
B =3, K = 4), where U Bs is reduced by 87.1% on average. The development of the solution quality
over time clearly indicates that a larger amount of computing time is required for generating high-quality
solutions. Even the tardiness obtained after 50% of the total computing time can be reduced by 11.1%.

In the last 10% of the time, the objective function value can still be improved by almost 1%.

100%%
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Fig. 5: Development of the solution quality over one hour of computing time

As a preliminary conclusion, it can be stated that the time limit of 1 hour is more than sufficient for
solving instances from the class with 2 order pickers. For the classes considered above, which include
3 or 5 pickers, it is further investigated whether the computing time has been chosen sufficiently or not.
Therefore, for these two problem classes, the development of the solution quality over four hours of
computing time is depicted in Fig. 6.
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Fig. 6: Development of the solution quality over four hours of computing time
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If three additional hours are spent on solving an instance from the class with 3 pickers, the total tardiness
can be reduced by 1.6% on average. Thus, we conclude that the time limit of one hour is appropriate
for those instances as the solution quality does not improve significantly. This is not true for problem
instances from the class containing 5 order pickers. On average, the objective function value of the best
solution found after one hour of computing time can be improved by 8.2%, which shows that the total
tardiness can significantly be reduced by spending a larger amount of computing time. However, in the
last hour, the reduction obtained amounts to less than 1.0%, indicating that four hours of computing time
are sufficient in order to tackle problems with 5 order pickers. Summing up, it can be pointed out that the
amount of computing time required for obtaining solutions of good quality increases with an increasing
number of order pickers, which could be expected as the problem gets more complex when more pickers

are available.

6 Conclusions and outlook

In this paper, we investigated the order assignment and sequencing, and vehicle routing problem
(OASVRP), which is particularly pivotal for an efficient organization of the distribution processes in the
retail industry. In the considered scenario, the orders are first processed in the warehouse by retrieving the
respective requested items from their storage locations. After having completed the picking operations,

vehicles will perform tours in order to deliver the requested items to the customers.

Order picking and vehicle routing operations are closely interconnected since a vehicle tour cannot
start before all requested items of the orders included in the tour have been provided by the warehouse.
Nevertheless, the integrated solution of these two subproblems has not been addressed in the literature so
far. For solving the OASVRP, an algorithm of Ullrich (2013) could be adapted to this problem. However,
the computational performance of this approach is limited. In order to introduce a more competitive
approach, in particular for large problem instances, an iterated local search (ILS) algorithm for the
OASRP has been proposed in this paper. Due to the complexity and the characteristics of the OASVRP,
the improvement procedure includes two alternating variable neighborhood descent algorithms which
tackle one subproblem each. By means of the ILS approach, the benefits from dealing with the OASVRP

as a holistic problem could be investigated even for problem instances of a size encountered in practice.

Extensive numerical experiments have been conducted. In the first part of the experiments, it is
demonstrated that the proposed ILS approach is suitable for solving large-sized instances. The second
part of the experiments is devoted to the investigation of the benefit from integrating order picking and
vehicle routing operations. It has been shown that the solution of the OASVRP as a holistic problem
reduces the total tardiness by up to 88.7%, while the average reduction over all problem classes amounts
to 37.8% compared to a sequential solution of the respective subproblems. Furthermore, problem
characteristics have been pointed out under which a separate solution of the subproblems leads to
acceptable results, and problem classes have been identified, where the consideration of the OASVRP

as a holistic problem is inevitable in order to provide high-quality solutions.
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Further research could concentrate on an extension of the problem regarding the picking operations.
In this paper, the processing times of the orders can considered as given due to the assumption that
customer orders have to be processed separately. However, the picking device may enable the order
pickers to temporarily store a larger number of items, which allows for processing several customer
orders on the same tour. In this case, it has to be decided which customer orders are included in a picker
tour. Furthermore, the routes could not be determined in advance anymore, which makes the resulting
problem even more complex. Nevertheless, integrating this aspect would clearly represent a worthwhile
endeavor because the processing times in the warehouse would significantly decrease if customer orders

do not have to be processed separately.

Regarding the vehicle routing subproblem, a straightforward extension represents the introduction of
time windows for the delivery of the customers. In particular, early deliveries may cause problems when
no room is available for temporarily storing the items. Such problems would be avoided by the integration
of an earliest possible delivery date. A further interesting extension can be found in the consideration
of vehicles with multiple compartments. Supermarkets receive several kinds of food, which have to be
transported under different cooling conditions. These products can be transported on the same tour if
the vehicle can be divided into different compartments, where each compartment represents a certain

temperature zone (Hiibner & Ostermeier, 2016).
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