
WORKING PAPER SERIES

The split delivery vehicle routing problem with
three-dimensional loading constraints

Andreas Bortfeldt/Junmin Yi

Working Paper No. 12/2018

Impressum (§ 5 TMG)
Herausgeber:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Wirtschaftswissenschaft
D Dekan

Verantwortlich für diese Ausgabe:

Otto-von-Guericke-Universität Magdeburg
Fakultät für Wirtschaftswissenschaft
Postfach 4120
39016 Magdeburg
Germany

http://www. ww. /femm

Bezug über den Herausgeber
ISSN 1615-4274

Andreas Bortfeldt

 1

The split delivery vehicle routing problem with
three-dimensional loading constraints

Andreas Bortfeldt1 and Junmin Yi2

1Otto-von-Guericke-University Magdeburg, Germany, e-mail: andreas.bortfeldt@ovgu.de
2Xiamen University of Technology, China, e-mail: yijunmin@xmut.edu.cn

Abstract: The Split Delivery Vehicle Routing Problem with three-dimensional loading constraints

(3L-SDVRP) combines vehicle routing and three-dimensional loading with additional packing

constraints. In the 3L-SDVRP splitting deliveries of customers is basically possible, i.e. a customer can

be visited in two or more tours. We examine essential problem features and introduce two problem

variants. In the first variant, called 3L-SDVRP with forced splitting, a delivery is only split if the

demand of a customer cannot be transported by a single vehicle. In the second variant, termed

3L-SDVRP with optional splitting, splitting customer deliveries can be done any number of times. We

propose a hybrid algorithm consisting of a local search algorithm for routing and a genetic algorithm

and several construction heuristics for packing. Numerical experiments are conducted using three sets

of instances with both industrial and academic origins. One of them was provided by an automotive

logistics company in Shanghai; in this case some customers per instance have a total freight volume

larger than the loading space of a vehicle. The results prove that splitting deliveries can be beneficial

not only in the one-dimensional case but also when goods are modeled as three-dimensional items.

Keywords: Vehicle routing, split delivery, 3D loading constraints, hybrid algorithm.

1 Introduction

In the distribution of goods and other logistic operations vehicle routing problems (VRP) are

of eminent importance. In the Capacitated VRP (CVRP) as well as in numerous derived VRPs

that address more complicated situations, each customer has to be visited only once. Thus, the

entire demand must be delivered by one vehicle during one visit. In the Split Delivery VRP

(SDVRP) this constraint is relaxed and the demand of a customer can be delivered by two or

more vehicles. Both numerical experiments with solution methods and theoretical results

prove that large savings in terms of travel distance can be obtained if splitting deliveries is

allowed (see, e.g., Archetti and Speranza, 2012).

In this paper, we study whether splitting deliveries remains beneficial, if the SDVRP is

extended to the SDVRP with three-dimensional (3D) loading constraints (3L-SDVRP). The

CVRP with three-dimensional loading constraints (3L-CVRP) was introduced by Gendreau et

al. (2006). Contrasting to the classical CVRP, customer demands are given by sets of

rectangular shaped pieces (boxes) and the scalar capacity of vehicles is changed to a 3D

loading space. Moreover, packing constraints frequently occurring in general cargo

transportation concerning, for example, the stability of packed goods, can be included. A

solution consists of routes and corresponding packing plans where each packing plan stows

the boxes of all customers visited in the same route. Extending “pure” routing problems to

vehicle routing problems with 3D loading constraints (3L-VRP) generally allows for a more

realistic handling of real-word routing problems where general cargo is to be delivered or

collected (Pollaris et al., 2015).

The 3L-SDVRP has been treated very rarely in the literature so far. Ceschia et al. (2013)

proposed a local-search algorithm for solving the 3L-CVRP and 3L-SDVRP. While they

achieved good results for the 3L-CVRP no distance savings could be obtained by permitting

 2

split deliveries.

In the following, we will examine essential features and variants of 3L-SDVRP and

propose a hybrid algorithm for solving the 3L-SDVRP. The algorithm should be able to

generate good solutions with a simple structure of packing plans within short running times.

We apply our algorithm to three sets of instances. The data of the first set stem from a

Shanghai automotive logistics company. The second set of instances comes from Ceschia et

al. (2013) with data originated from an Italian industrial partner. The third set is constructed

using well-known benchmark instances for the CVRP and the container loading problem

(CLP), respectively.

The paper is organized as follows. In Section 2, the relevant literature is reviewed and in

Section 3, we identify essential features and variants of the 3L-SDVRP and formulate this

problem with all details. In Section 4, we introduce a hybrid algorithm for the 3L-SDVRP.

Section 5 is dedicated to the numerical experiments. Finally, in Section 6 we present

concluding remarks and an outlook to future research.

2 Literature review

In this section, the literature concerning the SDVRP and 3L-VRPs is reviewed and existing

approaches to the 3L-SDVRP are shortly described.

2.1 Vehicle routing problem with split deliveries
The SDVRP is defined, roughly spoken, as the classical CVRP except that splitting deliveries

is allowed. Thus, a customer may be visited by several vehicles if beneficial. Moreover,

customers can exist with large demands exceeding the vehicle capacity; obviously, this

situation requires the possibility to split deliveries.

The SDVRP has been introduced by Dror and Trudeau (1989, 1990). The problem was

extensively analyzed by, e.g., Archetti et al. (2008) and Archetti et al. (2011). Interesting

results relate for example to worst-case analyses in order to quantify how much worse a

solution without split deliveries can be compared to SDVRP solutions. Exact approaches were

proposed amongst others by Dror et al. (1994), Belenguer et al. (2000), and Moreno et al.

(2010). The Branch-and-Cut-and-Price algorithm by Archetti et al. (2014) and the method

proposed by Ozbaygin et al. (2018) based on a new vehicle-indexed flow formulation belong

currently to the strongest exact methods. Since only small instances can be solved using exact

methods so far, the SDVRP is mostly tackled by metaheuristic methods. These include

amongst others local search (Dror and Trudeau, 1989, 1990), tabu search (TS, Archetti et al.,

2006; Berbotto et al., 2014), genetic algorithm (GA, Wilck and Cavalier, 2012), hybrid

metaheuristics (Rajappa et al., 2016) and particle swarm optimization (Shi et al., 2018). For

surveys of the SDVRP literature, the reader is referred to Archetti and Speranza (2012) and

Irnich et al. (2014).

2.2 Vehicle routing problems with 3D loading constraints
Pollaris et al. (2015) survey the state of the art in the area of combined vehicle routing and

loading problems (see also Iori and Martello, 2010).

The 3L-CVRP was introduced by Gendreau et al. (2006) and motivated by a real furniture

distribution decision in Italy. Besides geometrical constraints, exact-one-visit condition and a

weight constraint they considered four loading constraints on orientation, fragility, vertical

 3

stability and last-in-first-out policy (LIFO). The 3L-CVRP with these constraints is called

here the Gendreau formulation of 3L-CVRP.

Quite a few heuristic approaches for solving the 3L-CVRP in Gendreau formulation have

been proposed in recent years. Most of the solution methods are hybrids consisting of a

metaheuristic algorithm for routing and one or more relatively simple heuristic procedures for

packing such as deepest-bottom-left-fill. Used metaheuristic strategies for routing are among

others TS (Gendreau et al., 2006, Bortfeldt, 2012, Wisniewski et al., 2011, Zhu et al, 2012), a

combination of TS and guided local search (Tarantilis et al., 2009), ant colony optimization

(Fuellerer et al., 2010), a combination of GA and TS (Miao et al., 2012), adaptive variable

neighborhood search (Wei et al., 2014), evolutionary local search (Zhang et al., 2017) and

column generation technique-based heuristics (Mahvash et al., 2017). Some more elaborated

and effective packing procedures were employed by Gendreau et al. (2006), Bortfeldt (2012),

Tao and Wang (2015) and Zhang et al. (2017).

A model and exact approach of the 3L-CVRP was provided by Junqueira et al. (2013);

this model has additional constraints compared to the Gendreau formulation and only small

instances with nodes up to 15 and boxes up to 32 were solved. Hokama et al. (2016) proposed

two Branch-and-Cut algorithms for 3L-CVRP variant with just LIFO constraint, but no

fragility and stability constraints. Instances like E101-14s (Gendreau et al., 2006) with 100

nodes and 198 boxes were solved by the exact methods of Hokama et al. (2016) in which the

branch and cut enumeration tree is pruned using different techniques.

Other features are also considered in combination with 3D loading constraints such as

time windows by, e.g., Moura and Oliveira (2009), pallet loading by Zachariadis et al. (2012)

and Zhang et al. (2017), backhauls by, e.g., Reil et al. (2018) and Koch et al. (2018),

heterogeneous fleet by Pace et al. (2015), pick-up and delivery by, e.g., Bartók and Imre

(2011) and Männel and Bortfeldt (2016).

2.3 Approaches to 3L-SDVRP
To the best of our knowledge, there are only four works that involve the possibility of

splitting the customer’s demands in a routing-packing problem context.

Moura and Oliveira (2009) proposed two methods for the vehicle routing problem with

time windows and 3D loading constraints (3L-VRPTW). In the first method (called sequential

method) the authors relax the condition that each customer has to be visited only once.

Therefore we can view this method as an initial approach for solving the 3L-SDVRP.

Ceschia et al. (2013) deal with three problems. The first one is the 3L-CVRP in Gendreau

formulation. The second problem is an extended 3L-CVRP where more difficult packing

constraints, namely load bearing strength, robust stability, and reachability, are required (for

details see Section 3). The third problem is the 3L-SDVRP with same packing constraints as

in the second one. Ceschia et al. tackle all three problems by a local search approach that is

single-staged and based on a composite strategy combining simulated annealing and large

neighborhood search. Good results are achieved for well-known benchmark instances for the

3L-CVRP. To test their heuristic for the second and third problem they use 13 instances

derived from practice with up to 129 customers, up to 8060 boxes and limited vehicle fleet.

The local search approach does not reach feasible solutions for all instances of the extended

3L-CVRP. In case of 3D-SDVRP for all instances feasible solutions are provided, i.e. split

delivery helped to achieve the missing feasible solutions. However, the results with split

 4

delivery are worse than those without split delivery, which is in contrast to the classical

SDVRP. Furthermore, relatively long running times of up to 10,000 seconds are reported.

Yi and Bortfeldt (2018) address the 3L-SDVRP with the same packing constraints as the

3L-CVRP in Gendreau formulation. It is assumed that the demand of some customers has a

volume larger than the volume of one loading space. On the other hand only inevitable splits

are allowed, i.e. serving a customer in two or more routes is only permitted if not all boxes

can be packed into a single loading space. A hybrid heuristic consisting of a TS method for

routing and several packing heuristics is developed. The heuristic works in two main steps.

First small routes with one or two customers are generated in order to serve customers with

large demand that does not fit in a single loading space. Then the residual problem is solved

as 3L-CVRP. The heuristic is tested by a set of 11 instances from an automotive logistics

company in Shanghai with up to 42 sites and 1549 boxes. Actually the goods have not to be

delivered to the customer sites but have to be collected from them by homogeneous vehicles.

Good results are achieved in small running times.

Finally, Li et al. (2018) propose a novel data-driven three-layer search algorithm to solve

the 3L-SDVRP. They minimize the number of used vehicles with first and the total travel

distance with second priority. Also, Li et al. add a packing material constraint and other

process constraints for their industrial scenario in which an average delivery order contains

more than 300 boxes to be distributed across the Pearl River Delta region. Their approach is

organized in three parts for vehicle routing, cargo splitting and container loading. It is

designed to learn from historic routing data and thus to improve both the efficiency and

effectiveness of traditional meta-heuristics approaches. Unfortunately, very small instances

with only six customers are used for testing their approach.

All in all, only limited research has been done on the 3L-SDVRP. In particular it has not

been examined sufficiently whether splitting deliveries can be advantageous if

three-dimensional loading constraints are required.

3 Essential features, problem variants and formulation of the 3L-SDVRP

We consider essential features and problem variants of the 3L-SDVRP before a complete

problem formulation is given.

3.1 Essential features and problem variants of the 3L-SDVRP
The 3L-SDVRP is basically defined as the 3L-CVRP. However, it is no longer required that

each customer is visited only once. There are two reasons to split the delivery of a customer:

the splitting can be forced and it can be done optionally to gain a benefit. We consider both

variants of splitting in detail.

Forced splitting
Forced splitting occurs if the load of a customer, given by a set of boxes, cannot be stowed in

a single vehicle in terms of volume or weight. In the one-dimensional (1D) SDVRP splitting

is forced if and only if the demand of a customer exceeds the volume or weight capacity of a

vehicle. Thus, splitting only depends on the data of a given SDVRP instance. In the

3L-SDVRP the same applies with regard to the weight of a customer’s demand. However, the

volume of a customer’s demand as reason for (forced) splitting is a little more difficult. Of

course, if the total volume of a customer’s demand is larger than the volume of the loading

 5

space of a vehicle, splitting has to be done (such customers are called big nodes afterwards).

Let βi be the ratio of the demand’s volume di of customer i and the loading space volume Q

(in %, i = 1,…,n). If βi is less than 100%, the necessity of splitting depends not only on the

instance data. For example, if βi = 85% for customer i, a weaker packing algorithm might be

unable to stow all boxes while a more elaborated packing algorithm can do and avoid splitting

in this case. Hence the necessity of splitting in the 3D case does depend on the instance data

but also on the packing algorithm employed. Correspondingly, the set of big nodes of an

instance is in general a proper subset of the set of customers where splitting is inevitable.

In the problem variant 3L-SDVRP-f ("f" as forced), splitting customer deliveries is only

allowed if the demand of a customer cannot be stowed in a single vehicle by means of the

used packing algorithm. Of course, this definition is extended in a natural way to the case

where the load of a customer does not fit in two vehicles etc., i.e. only the minimum number

of demand splits per customer is permitted. The subtype 3L-SDVRP-f corresponds to a

management point of view that can be outlined as follows: Splitting of demands requires

organizational and working power effort. Hence splits are to be avoided whenever possible

while the number of routes (v) and the total travel distance (ttd) are to be reduced by other

means than by splitting demands.

Optional splitting

Optional splitting occurs if the load of a customer fits in a single vehicle (in terms of volume

and weight) but nevertheless splitting is done because it is beneficial to serve the customer in

two or more routes, i.e. the number of needed routes and the ttd can be reduced by splitting.

In the problem variant 3L-SDVRP-o ("o" as optional), splitting customer deliveries can be

done any number of times. Again, the judgment whether a solution for a 3L-SDVRP instance

is a 3L-SDVRP-o solution cannot be done without considering the used packing algorithm.

The subtype 3L-SDVRP-o corresponds to a management point of view that can be sketched

as follows: Use splitting as a means of reducing the total costs given by the sum of splitting

costs and routing costs (based on ttd and/or number of routes). If costs can be saved, splitting

deliveries should be applied. Of course, optional splitting is worthless if it leads to increasing

routing costs.

Irnich et al. (2014) present several variants of the (1D-)SDVRP that are used for

worst-case analyses. Some of them are quoted in Table 1 as we would like to find relations to

useful variants of the 3L-SDVRP.

Table 1: Variants of (1D-)SDVRP following Irnich et al. (2014).

Variant Description

SDVRP Demands: qi ≤ Q, i = 1,…,n.
Visits: the number of visits to a customer can be any positive integer.

SDVRP+ Demands: at least one customer j has a demand qj > Q
Visits: the number of visits to a customer can be any positive integer

VRP+ Demands: at least one customer j has a demand qj > Q.
Visits: the number of visits to a customer i is given by �qi / Q� and

the minimum delivery amount (MDA) per visit is given by (qi mod Q)

HSDVRP+ As SDVRP+; in addition it is assumed that each demand qi > Q is first split according to

qi = �qi/Q�.Q + (qi mod Q). Customer i is then served �qi/Q� times with a full load Q in a direct trip.

The remaining problem with demands (qi mod Q) has to be solved as SDVRP.

HVRP+ As HSDVRP+ but for the remaining demands the MDA is given as in VRP+,

i.e. the remaining problem has to be solved as CVRP.

 6

In the SDVRP the vehicle fleet is mostly assumed to be homogeneous and unlimited and

we will only consider such variants. We denote the number of customers by n, the vehicle

capacity by Q and the customer demands by qi, i = 1,…,n. Based on the 1D-SDVRP variants

indicated in Table 1 and the above definitions, four variants of the 3L-SDVRP are listed in

Table 2. As indicated in Table 2 the 1D variants SDVRP and SDVRP+ are integrated in the 3D

case because of the "fuzzy" character of customers’ demands that are to be split. The variants

H3L-SDVRP-o and H3L-SDVRP-f represent heuristic approaches and specify that demands to be split

are partially to be delivered by direct trips.

Table 2: Variants of 3L-SDVRP.

Variant Description Related

1D-SDVRP

variant

3L-SDVRP-o Optional splitting is allowed besides forced splitting. SDVRP,

SDVRP+

3L-SDVRP-f Only forced splitting is allowed and forced splitting is necessary for at least one

customer.

VRP+

H3L-SDVRP-o For each customer direct trips are to be planned (where necessary) until the

residual demand can be packed in one vehicle. The residual problem has to be

solved as 3L-SDVRP-o.

HSDVRP+

H3L-SDVRP-f As H3L-SDVRP-o but the residual problem has to be solved as 3L-CVRP. HVRP+

3.2 Problem formulation
In this section, we describe the 3L-SDVRP more formally. We assume that n customers and a

single depot (with index 0) are given. Each customer has a set Ii of boxes with known

dimensions that are to be transported from the depot to the customer (i = 1,...,n). The set Ii

includes mi boxes Iik (k = 1,...,mi) and box Iik has length lik, width wik, and height hik (i = 1,...,n,

k = 1,...,mi).

Let V = {0,1,..,n} denote the set of all customers (also called nodes) including the depot.

Let E be a set of undirected edges (i,j) connecting all node pairs (0 ≤ i < j ≤ n) and let G = (V,

E) be the resulting graph. Let a distance dij (dij ≥ 0) be assigned to each edge (i,j) (0 ≤ i < j ≤

n), i.e. symmetric distances are given. Finally, there is an unlimited fleet of identical vehicles

with a rectangular loading space with length L, width W, and height H. Each vehicle is

rear-loaded.

The loading space of each vehicle is embedded in the first octant of a Cartesian coordinate

system in such a way that the length, width and height of the loading space lie parallel to the

x-, y-, and z-axis, respectively. The placement of a box Iik in a loading space is given by the

coordinates xik, yik, and zik of the box corner that is closest to the origin of the coordinates

system; in addition, an orientation index oik indicates which of the possible spatial orientations

is selected (i = 1,...,n, k = 1,...,mi). A spatial orientation of a box is given by a one-to-one

mapping of the three box dimensions and the three coordinate directions.

A packing plan P for a loading space comprises one or more placements and is regarded

as feasible if the following three conditions hold: (FP1) each placed box lies completely

within the loading space; (FP2) any two boxes that are placed in the same truck loading space

do not overlap; (FP3) each placed box lies parallel to the surface areas of the loading space.

Figure 1 shows a loading space with placed boxes.

 7

Figure 1: A loading space with placed boxes.

A route R is a sequence (0, c1,...,cp, 0) that starts and ends at the depot. It is feasible if it

includes p ≥ 1 pairwise different customers (0 < ci ≤ n, i = 1,…,n).

A solution of the 3L-SDVRP is a set of v (v ≥ 1) pairs (R�, P�), where R� is a route and P�,

is the corresponding packing plan (� = 1,...,v). A solution is called feasible if the following

conditions are satisfied:

(F1) All routes R� and all packing plans P�, are feasible (� = 1,...,v).

(F2) Each customer occurs at least once in the routes R� (� = 1,...,v); in problem variant

3L-SDVRP-f the number of occurrences of a customer i is limited by the minimum

number of vehicles needed to pack the set of boxes Ii (i = 1,…,n); in problem variant

3L-SDVRP-o the number of occurrences of a customer i is not limited (i = 1,…,n).

(F3) The packing plan P�, contains only placements of boxes that belong to customers visited

in route R� (� = 1,...,v); each box Iik (i = 1,…,n, k = 1,…,mi) is packed in exactly one

packing plan P�, (� = 1,...,v).

In addition, the weight constraint and following loading constraints are integrated:

(C1) Weight Limit: Each box Iik has a positive weight dbik (i = 1,...,n, k = 1,…,mi) and the total

weight of all boxes in a packing plan P� must not exceed a maximum load weight D (� =

1,...,v).

(C2) LIFO Policy: Let c and c’ be two customers and c is visited before c’ in route � (� �

{1,...,v}); let b and b’ two boxes that belong to c and c’, respectively. Then b’ cannot be

placed in packing plan P� between b and the rear of the vehicle or above b.

By this constraint it is ensured that all boxes of each customer can be unloaded by pure

shifts in x-direction without moving other boxes.

(C3) Fixed Vertical Orientation: The height dimension of all boxes is fixed while horizontal

90° turns of boxes are allowed. Thus, only two of six values are allowed for the

orientation index oik of a placement (i = 1,...,n, k = 1,...,mi).

(C4) Vertical Stability: If a box is not placed on the vehicle floor, a certain percentage a of its

base area has to be supported by other boxes.

 8

(C5) Fragility: A fragility attribute fik (i = 1,...,n, k = 1,...,mi) is assigned to each box. If a box

is fragile (fik = 1) only other fragile boxes may be placed on its top surface, whereas both

fragile and non-fragile boxes may be stacked on a non-fragile box (fik = 0).

Finally, the 3L-SDVRP consists of determining a feasible solution that meets the

constraints (C1) – (C5) and minimizes firstly the number of routes and secondly (with lower

priority) the total travel distance. The formulation applies to all variants of the 3L-SDVRP

shown in Table 2, where obvious conditions are to be added for the variants H3L-SDVRP-o and

H3L-SDVRP-f.

As mentioned earlier, the constraints (C1) – (C5) were just adopted from the Gendreau

formulation of the 3L-CVRP. For the convenience of the reader we quote here also the new

loading constraints that were integrated by Ceschia et al. in their 3L-CVRP formulation (see

Ceschia et al., 2013, pp. 1139-1141):

(C6) Load bearing strength: There is a maximum weight per unit area that a box can uphold

depending on its type and its vertical orientation. This constraint is thought to replace

constraint (C5).

(C7) Robust stability: A minimum supporting area has to be guaranteed for all items below

the current one in the stack. It means that for a given item constraint (C4) is to require

not only for the underlying item but also for all items below it. This constraint serves to

replace constraint (C4).

(C8) Reachability: An item is considered reachable if the distance between it and a human

operator or a forklift is less than or equal to a fixed length �. It is supposed that the

operator is placed as close as possible to items inside the vehicle, i.e. the position with

the minimum length with respect to the current loading.

4 Hybrid algorithm

In this section, the hybrid algorithm for solving the 3L-SDVRP is described. It can be applied

to both problem variants, namely the variant with forced splits and with optional splits.

4.1 Main steps of the hybrid algorithm
The hybrid algorithm works in two main steps, the packing step and the routing step, which

are done strictly one after another and not in an interlocked fashion.

4.1.1 The packing step
In the packing step, 3D packing patterns are generated taking into account the entire demand

of all customers. Each 3D packing pattern fits in a single loading space and consists of one or

more vertical layers or walls that follow one another along the length of a loading space. The

width and height of a layer are given by the width and height of the loading space,

respectively. The layer length llayer is given by the difference of the largest and the smallest

x-coordinate of the layer. Both coordinates have to be taken by at least one box of the layer.

The pattern length lpattern is given as the sum of the lengths of all layers in the pattern. A

packing pattern with four layers is depicted in Figure 2. For each customer one segment

pattern (1C-SP) must and some further full load patterns (1C-FLPs) can be built. If multiple

packing patterns are built the pattern with the lowest filling rate is taken as 1C-SP and the

others are taken as 1C-FLPs. Together the patterns of a customer include all demanded boxes.

 9

Figure 2: Loading space and packing pattern (top view).

Big nodes have at least one 1C-FLP and also other customers can have one or more

1C-FLPs, which are then used for direct trips (see below). A segment pattern fills a loading

space in general only partly. The segment patterns of multiple customers can be combined in

one loading space if and only if the sum of the pattern lengths of all related segment patterns

does not exceed the loading space length L.

Often the filling rates of segment patterns are relatively low since only boxes of a single

customer are available for packing. Therefore, additional segment patterns, which store all

boxes of two chosen customers, are built and termed 2C-SP patterns. Again, a 2C-SP consists

of vertical layers, but now in a layer boxes of two customers can be placed. Later the two

individual segment patterns of two customers can be replaced by the related 2C-SP. This can

be done if the customers are visited one after another and might be advantageous if the length

of the 2C-SP is smaller than the sum of the pattern lengths of the related 1C-SPs. In Figure 3

the pattern types 1C-SP and 2C-SP are illustrated. The boxes in the left 1C-SP all belong to

customer 1 while the boxes in the right 2C-SP belong to customers 3 and 2 and there is a

mixed layer with boxes from both customers.

Figure 3: Pattern types 1C-SP and 2C-SP.

Since the customers of a 2C-SP have to be visited in direct succession only pairs of

W

y

x0

loading space

cabin

llayer

lpattern
layer

L

y

x

0

L

I
11

I
12

I

13

I
14

I

15

I
16

I

17

I
18

layer 3

layer 2

y

x

0

L

I
21

I

22

I
23

I
32

I
33

I
24

I
34

 I
31

layer 1

W W

 10

customers are considered that are not too far apart from each other. For a customer c1 only the

qnb% of all customers c2 are considered for 2C-SP (and called neighbors of c1) which lead to

the smallest insertion costs given as d01+d12–d02 (0: depot, qnb: a parameter). A 2C-SP for the

pair (c1, c2) is constructed in such a way that c1 can be visited first and c2 can be visited

second regarding constraint (C2).

All generated patterns (1C-FLP, 1C-SP and 2C-SP) are made available to the routing step.

Above all the following data are provided per pattern: 1) pattern type, 2) relevant customer(s),

3) pattern length, 4) number of layers and 5) length of each individual layer. In the generation

of packing patterns the geometrical constraints (FP1)-(FP3) and the packing constraints

(C3)-(C5) are observed. The routing step is mainly responsible for the weight constraint (C1)

and the LIFO policy (C2). The generation of patterns is carried out by a genetic algorithm

(1C-FLP, 1C-SP) and two construction heuristics (2C-SP).

4.1.2 The routing step
In the routing step first direct trips (depot	customer	depot) are constructed if there are full

load patterns for one or more customers. Afterwards a reduced problem remains to be solved

that can be characterized as follows:

- All boxes stowed in 1C-FLP and delivered by direct trips must not be considered any longer.

- Having packed all demanded boxes in packing patterns with a given pattern length only a

one-dimensional VRP remains to be solved since the packing patterns (1C-SP, 2C-SP) can

now be replaced by their pattern lengths.

- Thus, in this one-dimensional VRP two capacity restrictions are to be observed: the weight

constraint (C1) and the length capacity constraint (LCC); the latter results from the packing

step and requires that the sum of the pattern lengths of all 1C-SPs and 2C-SPs transported in

the same route must not exceed the length L of the vehicle's loading space.

So far only forced splits have been implemented where appropriate and are represented

for a given customer by his/her 1C-FLPs. Each of the 1C-SP and 2C-SP patterns can be

accommodated in a single loading space. Hence, no further splits are necessary. Therefore, in

the problem variant 3L-SDVRP-f only a one-dimensional CVRP remains to be solved in the

routing step. This is done by a local search procedure. In problem variant 3L-SDVRP-o

optional splits can be carried out and thus a one-dimensional SDVRP remains to be solved.

Optional splits are done as follows. Often the segment patterns of the customers of a route

do not completely fill the length of a loading space. There is a residual free length that,

however, cannot be filled by all layers of another customer c not being a member of the route

yet. In such cases it can be tried at least to pack a (proper) subset of the layers and to include

customer c in this route. Of course, customer c must also be a member of another route whose

loading space must accommodate the remaining layers of c. Thus, a "split customer" is always

the last customer in a route and the first customer in a second route. Sometimes one or more

of such splits allow to save an entire route and/or enable some distance saving. To carry out

optional splits the local search procedure is modified appropriately utilizing the layer

structure of packing patterns.

4.1.3 Overview and characterization of the approach

The hybrid algorithm is overviewed in Figure 4. After packing and routing in the final step

(not mentioned before) the 3L-SDVRP solution is completed, i.e. direct trips and all other

routes of the best achieved routing solution are combined with related 3D packing patterns.

 11

Algorithm 3L-SDVRP-H1 (in: problem data, parameters, out: best solution sbest)
 // Packing step
 for each customer i do
 generate patterns for customer i (1C-FLPs where necessary, one 1C-SP) by GA
 endfor
 for selected customer pairs (i,j) do
 generate 2C-SP pattern for customer pair (i,j) by construction heuristics
 endfor
 // Routing step
 for each customer i
 generate as many direct trips 0	i	0 as 1C-FLPs for customer i do exist
 endfor
 if only forced splits allowed then
 solve remaining CVRP by local search
 else // optional splits allowed
 solve remaining SDVRP by (modified) local search
 endif
 // Final step
 prepare solution sbest consisting of best achieved routing plan and related 3D packing patterns
end.

Figure 4: Overview of the hybrid algorithm.

We would like to characterize the approach as follows. The packing and the routing task

of the 3L-SDVRP are solved in separate steps following the principle "Packing first, Routing

second" that has been successfully used recently by Reil et al. (2018) and ensures small

running times. The structure of the generated packing patterns is very simple. Boxes are

placed in vertical layers and each layer accommodates only boxes of one or two customers.

Finally, for both 3L-SDVRP variants the algorithm follows the heuristic approach where

customers with large demands are served by direct trips before the residual problem is tackled,

i.e. the hybrid algorithm belongs to the type H3L-SDVRP-f or H3L-SDVRP-o (see Table 1 and 2). In

the following, both main steps of the hybrid algorithm are considered in greater detail.

4.2 Generating packing patterns
The generation of packing patterns is done in three steps. In a preprocessing step stacks of

boxes are built from the boxes of all customers. Afterwards patterns for all customers are

created by placing directly stacks instead of original boxes. Patterns of types 1C-FLP and

1C-SP are built in the second step while 2C-SP patterns are constructed in the third step.

4.2.1 Building stacks from boxes
Stacks are built from the original boxes and afterwards used as boxes to generate packing

patterns in order to cope with large box sets in small running times. For each customer the

boxes are transformed into stacks individually, i.e. a stack includes only boxes of a single

customer. To handle a stack as a box in the pattern generation, the following data of a stack

are provided: 1) the related customer, 2) the dimensions of the bounding cube of the stack, i.e.

its length, width and height, 3) the weight, i.e. the sum of the weights of the included boxes, 4)

the fragility, given by the fragility of the topmost (original) box. Only in the final step of the

hybrid algorithm when the complete solution is prepared, all placed stacks are transformed

back into placed original boxes. The procedure for transforming original boxes of a given

customer into stacks is explained in the appendix.

 12

4.2.2 Building patterns of types 1C-FLP and 1C-SP
For each customer 1C-FLP and 1C-SP patterns are separately generated by the procedure

depicted in Figure 5.

Algorithm generate_1C_patterns(in: customer c, problem data, parameters, out: set of patterns P(c))
 B(c) := {boxes of customer c}
 P(c) :=

 do
 solve the container loading problem for container L, W, H and B(c)
 by means of GA CBGAS and get a pattern p
 P(c) := P(c) U {p}
 update B(c), i.e. remove all boxes placed in pattern p
 while (B(c) �
)
 label the pattern p with lowest filling rate in P(c) as 1C-SP pattern
 label the other patterns (if any) as 1C-FLP patterns
end.

Figure 5: Building patterns for a single customer.

In each cycle of the loop a pattern is built, i.e. another vehicle loading space is filled,

using the GA for container loading (called CBGAS) by Bortfeldt and Gehring (2001). The

patterns are then marked as 1C-SP or 1C-FLP patterns. Here we want to outline only the main

ideas and features of the GA:

Pattern structure: As mentioned above the GA generates patterns that consist of vertical

layers following one after another along the length of the loading space (see Fig. 1). The

length of each layer is given by the corresponding dimension of a so-called layer defining box

(LDB) placed in a suitable spatial orientation.

Genetic operators: Complete solutions (patterns) are generated by means of problem

specific genetic operators, namely a crossover and two variants of mutation. All operators

first copy layers with high filling rates from parents to descendants. Since the descendents are

mostly still incomplete then, new layers are generated afterwards by an internal construction

heuristic that is also used to generate the initial population.

Generation of layers: A single layer is generated in two steps. First the layer is defined as

the LDB and its spatial orientation is determined. Only large boxes are taken as LDBs.

However, a variety of layers is reached by varying the LDB and its orientation. In the second

step the layer is filled by the LDB and further boxes. Each box is placed in a corner of a

cuboidal residual space and then three new residual spaces inside the one just filled and in

front of, besides and above the placed box are constructed and filled afterwards if possible.

Filling a layer is finished if no further residual space or no further box is available. To apply

CBGAS to the 3L-SDVRP up to five of the largest residual spaces per layer that could not be

filled are provided as a solution component in order to fill these spaces later by boxes of

another customer. Only residual spaces are provided that are situated at the front side of its

layer (nearer to the rear) and extend until the roof of the loading space.

Filling residual spaces: If a residual space is to be filled the most voluminous couple of

boxes is determined that fits into the space. One of the boxes is immediately placed in the

residual space. The other one is placed later in one of the derived residual spaces. This feature

helps much to reach good quality solutions.

Fitness evaluation and selection: The fitness of a solution is derived from its filling rate

while the selection of individuals for crosssover and mutation is done by a combination of

 13

ranking selection and purely randomly selection.

Reproduction schema: generational replacement is applied, i.e. all individuals of an old

generation are replaced by a complete new generation at once.

Observed constraints: The GA can be applied to the 3L-SDVRP as defined above, i.e. all

relevant constraints can be observed by means of the GA.

4.2.3 Building patterns of type 2C-SP

For a customer c1 and a neighboring customer c2 two different procedures are applied to

construct 2C-SPs that are based on the 1C-SPs for both customers. Seen from the rear first

some layers of customer c1 (c1-layers for short) are chosen from the 1C-SP of c1; then a

(newly constructed) mixed layer with boxes from c1 as from c2 follows and the end of the

pattern (nearer to the cabin) is formed by some layers of the 1C-SP for c2. Figure 6 shows a

2C-SP generated by the first procedure on the left and a 2C-SP produced by the second

procedure on the right.

The first procedure for generating 2C-SP is based on the provided residual spaces for the

layers of the 1C-SPs. For each pair (c1, c2) one c2-layer is selected and its residual spaces are

taken to accommodate all the boxes of a c1-layer to form a mixed layer. If this works the

c1-layer and its length are saved and the procedure terminates. For this purpose the c1-layers

are sorted by decreasing layer length and passed through in this order to make the saved layer

length as large as possible. For each c1-layer all c2-layers are examined until all boxes of the

current c1-layer can be placed within residual spaces of the current c2-layer or all c2-layers

were checked without success. Since the residual spaces of a used c2-layer are always situated

at the front of the layer (nearer to the rear) and this (mixed) layer follows directly the

remaining c1-layers the LIFO policy constraint (C2) is observed regarding the boxes of

customers c1 and c2.

Figure 6: Two 2C-SPs generated by two different procedures.

W
y

x

0
cabin

L

c1-layer

c1-layer

original c2-layer

c2-layer

mixed
layer

residual
space

c1-boxes

c2-layer

c1-layer

W
y

x

0
cabin

L

c1-layer

c1-layer

c2-layer

c2-layer

mixed
layer

c2-layer

c1-layer

first row

second
row

row
length stack 1 stack 2 stack 3

stack 4 stack 5

 14

In the second procedure for building 2C-SP first c1-layers and c2-layers of the related

1C-SPs are removed. The procedure is called two times; in the first call only the c1-layer and

the c2-layer with worst filling rates are eliminated while in the second call two layers with the

lowest filling rates are removed per customer. In any case the boxes of the removed layers are

taken to build stacks where each stack includes boxes from c1 as from c2. The generation of

stacks is done by a recursive procedure where each incomplete stack is extended by a next

box in up to maxcands variants (maxcands is a parameter). The stacks, accommodating all

boxes of the removed layers, are then placed in a new mixed layer that is again situated

between the remaining c1-layers (nearer to the rear) and the remaining c2-layers (nearer to the

cabin). More precisely, the stacks are placed in one or more rows running along the width of

the loading space. In each stack boxes of customer c1 are stowed above boxes of customer c2;

let hc2top be the maximal height of the top face of boxes of customer c2 in a stack. The stacks

are sorted by decreasing height hc2top before the rows are built in front of the first remaining

c2-layer. Through this the heights hc2top of the stacks in the first row are as least as high as the

heights hc2top of the stacks in the second row etc. and constraint (C2) is met again.

At the end of all three trials for a customer pair (c1,c2), executed by the two 2C-SP

procedures, only the 2C-SP with the largest saving � is accepted if � > 0. The saving � is

defined as:

�(2C-SP(c1,c2)) := lpattern(1C-SP(c1)) + lpattern(1C-SP(c2)) – lpattern(2C-SP(c1,c2)). (1)

Further details of the procedures for building 2C-SPs can be found in the appendix.

4.3 Routing algorithm
The routing algorithm is based on a representation of solutions as giant tours (cf. Vidal et al.,

2014, p. 667) where any solution is given as a permutation of all n customers without explicit

mention of visits to the depot. The giant tour representation allows the uniform handling of

moves affecting single routes and pairs of routes. We will apply swap and shift moves for our

local search. Moreover, this representation enables to manage both problem variants,

3L-SDVRP-f and 3L-SDVRP-o, in a uniform fashion. The routing algorithm is also

characterized by the extensive use of diversification and post-optimization features.

Subsequently the routing algorithm is described in a bottom-up fashion including the steps: (1)

decoding a solution, (2) generating the initial solution, (3) determining the best neighbor of a

current solution and (4) main algorithm of local search.

4.3.1 Decoding a solution
The decoding procedure gets as input a coded solution, i.e. a complete customer sequence.

For each customer, the related 1D-SP pattern with its loading length, weight and all layers is

needed. The 2C-SPs for customer pairs (c1, c2) must be also provided. Moreover, the

parameter max_split_costs (see below) is required. The decoding procedure returns the

complete solution with following features:

(1) the routes of the solution,

(2) all implemented customer pairs (CP), i.e. all pairs of consecutive customers for which a

2C-SP pattern is taken instead of two 1C-SP patterns,

(3) for problem variant 3L-SDVRP-o the customers whose delivery is split and the related

layer distribution.

In our approach, a customer can be visited at most two times. If a customer is visited

 15

twice then he/she must be the last customer in a route and the first customer in a second route.

Besides the set of customers being visited twice a solution must include for each such

customer the distribution of his/her cargo layers between both visits.

In the first step of decoding the CPs to be implemented are selected. For this purpose the

potential CPs, i.e. all pairs of customers (c1, c2) in the coded solution for which a 2C-SP

pattern exists are examined. Each customer can occur in multiple potential CPs while at most

one pair per customer can be chosen for implementation. To maximize the total savings in

terms of loading length a greedy approach is applied. The CP in the coded solution with the

highest savings is selected first. Then the CP of the coded solution with the highest savings is

selected whose customers do not already appear in the first pair, etc. The selection procedure

for CPs is illustrated by an example in Figure 7.

 Given customer sequence (n = 8):

 2 7 1 4 5 3 8 6

 Potential CPs, related savings (in length units) and selection:

 c1 c2 savings � selection

 1 4 12 yes

 7 1 10 no (cust. 1 used before)

 5 3 7 yes

 3 8 5 no (cust. 3 used before)

Figure 7: Selection of CPs to be implemented (example).

In the second step of decoding the routes are determined and decisions on splitting

deliveries are made where necessary. For that purpose the complete customer sequence is

traversed (see Figure 8). Each cycle of the corresponding while-loop checks first, whether the

current customer c at sequence place ic is the first of a CP or not. In the latter case, it is

examined whether customer c fits into the current route ir, i.e. whether the 1C-SP of c fits into

the loading space of route ir in terms of weight and loading length. If yes, route ir is assigned

to customer c and the route is updated w.r.t. number of customers, needed loading length and

packed weight. The decoding is continued with the same route ir and the next customer at

place ic+1. If customer c does not fit completely into route ir, an attempt is made to split the

delivery of c, i.e. to distribute the layers of the corresponding 1C-SP to the current route ir

and next route ir+1. If this fails, the decoding is continued with the next route ir+1 while

customer c remains to be processed. If at least one layer of c fits into the old route ir and

splitting is not "too expensive" (see below), the routes ir and ir+1 are assigned to c who is

labelled as a "split customer", i.e. c is the last customer in route ir and the first one in route

ir+1. The routes ir and ir+1 are updated whereby the distribution of the c-layers to the routes

has to be recorded, too. The decoding is continued with next customer and route ir+1 that has

been already used for customer c.

A split delivery of a single customer c is tried as follows. First a travel cost checking is

done in order to restrict the increase of travel distance caused by split deliveries. For a single

customer it is checked whether the relative insertion costs of customer c in route ir do not

exceed the parameter value max_split_costs, i.e.

 (dcprev,c + dc,0) / dcprev,0 ≤ max_split_costs (2)

where customer cprev precedes c. If criterion (2) is not satisfied no splitting takes place.

 16

Algorithm determine_routes (in: solution S, segment patterns, max_split_costs, out: S)
 initialize routes w.r.t. number of customers, needed loading length and packed weight
 // traverse complete customer sequence S.Cs
 ir := 1; ic := 1 // current route and current customer position
 while ic ≤ n do
 if current customer c = Cs(ic) does not belong to a customer pair then
 if c fits into current route ir then
 assign route ir to c and update route ir w.r.t. no. of customers, loading length, weight
 ic := ic + 1 // continue with next customer, route remains same
 else // c does not fit into route ir
 split delivery of c if necessary, distribute c-layers from 1C-SP(c) to current and next route
 if delivery of c could not be split then
 ir := ir + 1 // continue with next route, customer remains same
 else // at least one c-layer fits into route ir
 assign routes ir and ir+1 to c and assign attribute "split" to c
 update routes ir and ir+1 including distribution of c-layers to ir and ir+1
 ic := ic + 1 // continue with next customer
 ir := ir + 1 // continue with next route, i.e. second route of c
 endif
 endif
 else if customer c = Cs(ic) is first of customer pair (c,c') with c' = Cs(ic+1) then
 if (c,c') fits into current route ir then
 assign ir to c and c' and update route ir w.r.t. no. of customers, loading length, weight

ic := ic + 2 // continue with next but one customer, route remains same
 else // (c,c') does not fit completely into current route ir
 split delivery of c or c' if necessary, distribute c/c'-layers from 2C-SP(c,c') to routes ir, ir+1

if none of deliveries could be split then
 ir := ir + 1 // continue with next route, customers remain same
 else // at least first c-layer fits into route ir

if delivery of c was split then
 assign routes ir and ir+1 to c and route ir+1 to c' and assign attribute "split" to c
 else // delivery of c' was split
 assign route ir to c and routes ir and ir+1 to c' and assign attribute "split" to c'
 endif
 update routes ir and ir+1 including distribution of c/c'-layers to ir and ir+1
 ic := ic + 2 // continue with next but one customer
 ir := ir + 1 // continue with next route
 endif
 endif
 endif
 endwhile
 no_of_routes := ir;
end.

Figure 8: Determining of routes as step of decoding procedure.

Note that by means of criterion (2) and value max_split_costs = 0 problem variant

3L-SDVRP-f is implemented, too. If criterion (2) is satisfied the layers of customer c are

examined in ascending order of their loading lengths. Each layer that still fits into route ir is

accepted for this route while the other layers are reserved for route ir+1. If no layer fits into

route ir, the attempt to split the delivery of customer c remains also ineffective.

The second part of the loop deals with the case that the next customer is the first one of a

CP (c,c') whose 2C-SP is to be used. The decoding procedure runs similarly to the above case

of a single customer. An attempt to split the delivery of a customer pair is now done as

follows. First all the layers of the related 2C-SP are examined in pattern order to ensure that

LIFO constraint (C2) is met. If the last layer fitting in route ir is a pure c-layer the customer

 17

whose delivery should be split is c.

Otherwise, if the last fitting layer is a mixed layer (with boxes from c and c') or a pure

c'-layer the "split" customer is c'. In the former case a travel cost checking is done using again

criterion (2); in the latter case the similar criterion (3) is applied:

 (dc,c' + dc',0) / dc,0 ≤ max_split_costs (3)

Again, the attempt to split the delivery of one customer of the pair (c, c') remains ineffective if

not even the first c-layer does fit into route ir or if criterion (2) or (3), respectively, is not met.

4.3.2 Generating the initial solution
The initial solution for the local search is determined by a randomized variant of the Savings

heuristic. Multiple feasible 3L-SDVRP solutions are generated and the best among them is

taken as initial solution. Splitting deliveries as well as using CPs (i.e. 2D-SP patterns) is not
involved and a special coding schema is used. First a complete sorted savings list is produced.

A coded solution is a binary string with the length of the savings list. A value 1 at position j
means that the related savings is to implement if this does not lead to a violation of constraints

while a value 0 at position j specifies that the related savings is not to implement even if this

would not violate any constraint. A coded solution is decoded by examining the binary string

and building the decoded solution from scratch. Two capacity constraints are observed,

namely the weight and the length capacity constraint (LCC). For each of nindiv trials (nindiv

is a parameter) first a coded solution is provided at random where the probability of value 1

per position is 0.5. This solution is then decoded, the number of tours and the ttd value are

determined and the best solution found is updated if necessary.

4.3.3 Determining the best neighbor of a current solution
If the best neighbor siter_best of a current solution scurr is determined within an iteration, swap

and shift moves are applied at the same time as shown in Figure 9.

Algorithm determine_best_neighbour(in: current solution scurr, parameter nbh_size,
 out: best neighbour solution siter_best)
 siter_best.nt = n + 1; siter_best.ttd =
 for i := 1 to n do
 // determine range of moves
 jmin := MAX(1, i - nbh_size); jmax := MIN(n, i + nbh_size)
 // swap moves
 for j := jmin to jmax do
 snext := scurr
 swap customers at positions i, j in snext
 decode solution snext and update siter_best by snext where necessary
 endfor
 // shift moves
 for j := jmin to jmax do
 snext := scurr
 shift customer at position i behind (i < j) or before (j < i) customer at position j in snext
 decode solution snext and update siter_best by snext where necessary
 endfor
 endfor
end.

Figure 9: Determining the best neighbour solution.

For a given current solution and a first customer C(i) selected swap and shift moves with

a second customer C(j) are tried. For each move the decoded solution snext is provided and

 18

solution siter_best is updated where necessary. The range of swap and shift moves is governed

by the parameter nbh_size. We distinguish between small and large neighborhoods. In the

former case nbh_size takes the value MAX(n/4, 3) while in the latter case nbh_size equals

MAX(n, 3). By changing nbh_size during the search (see below) additional search paths are

enabled and the search is diversified.

4.3.4 Main algorithm of local search
The entire local search is organized in multiple partial searches as depicted in Figure 10. Each

partial search is characterized by two features. First, by the maximum admissible splitting

costs that are taken into account when a solution is decoded (see 4.3.1). Second, by the range

of swap and shift moves where small and large ranges alternate (see 4.3.3). Altogether 2.nps

partial searches are carried out as the number of different values of the maximum splitting

costs is given by parameter nps and there are two neighborhood sizes.

Algorithm local_search(in: problem data, parameters, out: best solution sbest)
 generate initial solution sinit and set sbest := sinit
 for ips := 1 to nps do // outer loop: changing max. admissible splitting costs
 for inbh := 1 to 2 do // inner loop: changing neighborhood size
 // specify max. admissible splitting costs
 max_split_costs := Max_split_costs[ips]
 // specify neighborhood size
 if inbh = 1 then nbh_size = MAX(n/4, 3) else nbh_size = MAX(n, 3) endif
 // partial search
 scurr := sbest // starting from best solution so far
 for iter = 1 to niter do
 siter_best := determine_best_neighbour(scurr, nbh_size)
 post-optimize siter_best by 2-opt
 if ips = 1 and n ≤ 100 then post-optimize siter_best by 3-opt endif
 update best solution sbest by siter_best where necessary
 scurr := siter_best
 endfor
 endfor
 endfor
 post-optimize sbest by 3-opt
end.

Figure 10: Main algorithm of local search.

The possible values of the admissible maximum splitting costs are held in the vector

Max_split_costs. At the first place the value 0 is recorded, saying that no optional splitting is

allowed at all. Hence, the parameter nps is set to 1 for problem variant 3L-SDVRP-f and in

this case only two partial searches are performed. Only for problem variant 3L-SDVRP-o

further values of Max_split_costs on places 2,3,... are used. The values of Max_split_costs

show an exponential growth so that large splitting costs are accepted at the end (see 5.1).

Each partial search is started from the best solution sbest achieved so far. Per iteration first

the best neighbor of the current solution scurr is calculated before the best neighbor solution is

post-optimized by 2-opt and possibly by 3-opt. Both procedures are effective local search

methods in routing (see, e.g., Helsgaun, 2009). Note that the decoding procedure has also to

be integrated in the local search methods 2-opt and 3-opt. 3-opt is only called in the first two

partial searches and if the number of customers does not exceed 100. At the end of an

iteration the best solution sbest is updated if necessary and scurr is set to siter_best for the next

iteration. Finally, 3-opt is applied again, this time to the best found solution sbest.

 19

5 Numerical experiments

In this section, we first describe the setting of the parameters used in our approach. Our

3L-SDVRP problem formulation follows the Gendreau 3L-CVRP formulation except the

one-visit-per-customer condition. We test three sets of instances, namely the Shanghai

instances, the Ceschia instances and the new B-Y instances. The first two sets are derived

from real-world operations while the B-Y instances are generated based on well-known VRP

and CLP benchmark instances. All instances are characterized by weakly heterogeneous box

sets that are common in the context of factory inbound logistics. Note that the 3L-CVRP

instances by Gendreau et al. (2006) have strongly heterogeneous box sets which often occur

in retail and distribution logistics. We will describe the instance sets and compare our results

with the best ones in the literature on the 3L-SDVRP. All experiments were run on a 3.40

GHz PC (AMD A10-5700 APU) with 8.0 GB RAM under Windows 8.1. The algorithm was

coded using MS Visual C++ 2010 (Express Edition). Each instance of all sets was run ten

times with different seed values of the random number generation. Our algorithm is denoted

by SDVRLH2.

5.1 Parameter setting

The parameters for the GA that serves the generation of 1C-SP and 1C-FLP patterns are

chosen unchanged as in Bortfeldt and Gehring (2001). Further parameters for packing and

routing are set as depicted in Table 3 (n stands for the number of customers).

The number of partial searches nps (for a given neighborhood size) and the vector

Max_split_costs are determined as follows. First the minimum and maximum relative

insertions costs ricmin and ricmax over all pairs of customers are calculated according to ricmin =

MIN {(dij + dj0) / di0 | 1 ≤ i, j ≤ n} and ricmax = MAX {(dij + dj0) / di0 | 1 ≤ i,j ≤ n}. Then we set

Max_split_costs(1) = 0 and Max_split_costs(2) = 2.ricmin. On each of the following places

3,4,… the preceding value is doubled until the value ricmax is exceeded. Then the last value is

replaced by ricmax. The number of occupied places of Max_split_costs gives the number of

partial searches nps.

The specified parameter setting was determined in pre-tests of limited size and is used for

all numerical experiments.

Table 3: Parameters for packing and routing.

Parameter Meaning Value

qnb Percentage of neighboring customers (in %) 30

maxcands Maximum no. of variants for next stack placement if n ≤ 50: 3

else: 2

nindiv No. of trials for generating the initial solution 10

nbh_size (small) Small neighborhood size for swap / shift moves MAX(n/4, 3)

nbh_size (large) Large neighborhood size for swap / shift moves MAX(n, 3)

niter No. of iterations in a partial search 100

niter_wimpr No. of iterations without improvement; a partial search is

terminated if niter_wimpr iterations are carried out without

yielding a new best solution sbest

20

maxtime Time limit for entire search (in s) if n < 50: 240

else if n < 200: 1800

else: 3600

maxtime-2opt Time limit for single 2-opt run (in s) 120

 20

5.2 Experiments with Shanghai instances

Our data come from the cargo collecting operations in and around Shanghai area by a

Shanghai automotive logistics company, which serves many car makers in metropolitan

Shanghai and all over China. Both the data of routing aspects or packing aspects are from

real-world, not "man-made".

There are 3849 order lines in the data table, each with a part number, part name, supplier,

pick-up node address, area code, package dimensions (length, width and height), and required

number of each part. In summary, there are 191 suppliers with 200 pickup nodes that are

located around Shanghai area with each node-pair distance within 120 km, and they are

initially grouped into 16 areas. These parts in all have 634 package dimensions (h×w×l) with

the smallest box 6×9×12 cm3 and the largest box 190×155×225 cm3. For each pickup node,

there are 24 items on average to pick up and the highest item number is 270 boxes.

For our Shanghai dataset, based on the areas, we divided the whole data table into 11

first-level instances with node addresses ranging from 5 to 46 (Yi and Bortfeldt, 2018). The

box number of each instance ranges from 73 to 1459. In the second level, these 11 instances

are combined to 3 big ones by area amalgamation. Instance Sha12 accumulates all the nodes

and boxes of Sha2, 5 and 6 instances, but with unified bigger vehicle, similarly Sha13 gathers

Sha1, 4, 7 and 10, Sha14 gathers Sha3, 8, 9 and 11. Finally, in the third level, Sha15 combines

all eleven instances (Sha1-11) together with total 200 nodes, 634 box types and 4776 boxes.

These 15 instances are summarized in Table 4.

A unique character of the Shanghai instances is that there are big nodes with β > 100%, in

Figure 11 the distribution of β values of the 200 nodes in instance Sha15 is depicted. In

practice, these big nodes usually are secondary collecting points that receive parts or

components from suppliers far from Shanghai area. To pick up demand from big nodes, split

delivery has to be applied. However, whether to split other nodes leads our problem to both

3L-SDVRP-f and 3L-SDVRP-o categories.

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

β value

node

Figure 11: Distribution of β values (in %) of the 200 nodes in instance Sha15.

 21

Table 4: Summary of the Shanghai instances.

Instance
Nodes

(n)

Box

types

Items

(M)

Vehicle

type

Lower bound

LB on vehicles *

Items per

box type

Items per

customers

Sha1 5 26 261 MV 2 10.0 52.2

Sha2 8 50 167 SV 6 3.3 20.9

Sha3 10 17 73 SV 3 4.3 7.3

Sha4 12 33 204 BV 3 6.2 17.0

Sha5 12 59 228 MV 4 3.9 19.0

Sha6 15 56 228 MV 4 4.1 15.2

Sha7 16 79 439 BV 7 5.6 27.4

Sha8 18 51 303 MV 6 5.9 16.8

Sha9 27 98 734 CV 8 7.5 27.2

Sha10 31 134 590 BV 9 4.4 19.0

Sha11 46 185 1549 CV 16 8.4 33.7

Sha12 35 149 623 MV 10 4.2 17.8

Sha13 64 234 1494 BV 19 6.4 23.3

Sha14 101 311 2659 CV 26 8.5 26.3

Sha15 200 634 4776 CV 42 7.5 23.9

*: for calculation see equation (4) below

There are four vehicle types for different instances in Table 4: SV with H×W×L dimensions

175×180×415 cm3, weight capacity 2.5 t; MV: 242×217×640 cm3, 8t; BV: 240×240×860 cm3,

15 t; CV: 270×235×1202 cm3, 26.46 t, respectively. However, for each instance, there is only

one vehicle type, i.e. an unlimited homogeneous fleet. The cost to apply a new vehicle is quite

high, thus the objective priority is given to the number of vehicles (tours) v, then to travel

distance ttd. The lower bound LB on vehicles is calculated according to

 � � �
�

�
�
�

�
���

�

�
�
�

�
� ����

� ��

HWLlwhQdLB
n

i

m

k
ikikiki i

n

i
i

i

1 11

� (4)

In each instance, the pickup node addresses are located on a public e-map. The distance

between any pair of nodes is gained from the Baidu e-map route (map.baidu.com). For the

Shanghai instances the Gendreau formulation of the 3L-SDVRP is assumed, i.e. the

constraints (C1) – (C5) have to be observed. The percentage a of stability constraint (C4) is

set to 75% and the same is done for the other instance sets.

The results for the Shanghai instances are presented in Table 5. For the problem variants

with forced splitting and optional splitting the average number of tours v, the average ttd and

the average run time rt (in seconds) as well as the best number of tours and best ttd over ten

runs are indicated. In the last two lines sums are given for v and averages for ttd and rt.

It is worth comparing our results with those of Yi and Bortfeldt (2018). In this paper, only

results for the first 11 Shanghai instances and for variant 3L-SDVRP-f were provided and

each instance was run only once. With our new algorithm SDVRLH2, the results are

improved in terms of number of vehicles v by 4.4% and in terms of ttd by 7.3% (if the best

values for 3L-SDVRP-f are compared, see line "Total-11"). Also SDVRLH2 needs on average

6 seconds less run time.

Comparing the results for the problem variants 3L-SDVRP-f and 3L-SDVRP-o, we can

see that the number of vehicles v was improved for 3L-SDVRP-o by 1.1% and the ttd was

reduced by 0.4% if the best values are compared. With optional splits the run time is about

23% higher though. There are at least eight of 15 instances with better results (in bold) than

those of 3L-SDVRP-f. However, only a small improvement was achieved by optional splits.

 22

Table 5: Results for Shanghai instances.

Instance SDVRLH2, forced splitting SDVRLH2, optional splitting Yi & Bortfeldt, 2018
 Avg Best Avg Best
 v ttd rt (s) v ttd v ttd rt (s) v ttd v ttd rt (s)
Sha1 3.0 562.6 0.1 3 562.6 3.0 562.6 0.3 3 562.6 3 582.2 2

Sha2 9.0 2813.2 11.8 9 2813.2 9.0 2786.6 11.5 9 2786.6 10 2907.0 13

Sha3 4.0 397.7 0.4 4 393.0 4.0 396.5 1.1 4 393.0 4 369.2 42

Sha4 4.0 352.2 2.7 4 349.7 4.0 350.3 3.0 4 349.7 4 372.0 13

Sha5 6.0 1451.3 7.5 6 1447.6 6.0 1451.3 7.8 6 1447.6 6 1493.9 10

Sha6 8.0 486.1 10.6 8 481.3 8.0 482.1 11.2 8 479.6 7 620.0 19

Sha7 12.0 1708.3 16.0 12 1694.8 12.0 1707.5 16.8 12 1694.8 11 1701.4 28

Sha8 8.5 376.9 5.1 8 360.9 8.0 357.7 5.7 8 352.7 9 387.7 11

Sha9 13.1 955.1 12.2 13 942.6 13.0 944.3 16.9 13 928.7 15 1063.8 17

Sha10 14.0 1610.2 15.8 14 1590.1 14.0 1605.4 20.5 14 1590.1 15 1946.2 53

Sha11 27.0 518.2 93.2 27 512.6 26.2 523.2 150.7 26 521.5 29 581.8 33

Sha12 17.0 2972.7 35.4 17 2942.1 17.0 2968.1 48.1 17 2942.1

Sha13 28.0 3174.6 424.8 28 3128.2 27.7 3147.9 594.1 27 3097.3

Sha14 45.1 1538.5 883.0 45 1481.8 44.2 1574.4 1802.3 44 1522.5

Sha15 72.1 4860.3 3620.5 71 4867.8 71.9 4867.0 3625.9 71 4795.4

Total 270.7 1585.2 342.6 269 1571.2 268.0 1581.7 421.1 266 1564.3

Total-11 15.9 108 1013.5 113 1093.2 21.9

The mean volume utilization of the loading spaces over the 15 instances amounts to

57.4% in variant 3L-SDVRP-f and to 57.8% in variant 3L-SDVRP-o; this can be considered a

good utilization if the packing constraints are taken into account.

5.3 Experiments with instances from Ceschia et al.
Ceschia et al. (2013) present a set of industrial instances which exhibit a high variability in

terms of the number of customers, the number of box types and the number of boxes. There

are 13 instances with customers ranging from 11 to 129, boxes ranging from 254 to 8060,

boxes per customer ranging from 1 to 217. These boxes are industrial goods with dimensions

ranging from 10×1×11 to 239×100×230 (h×w×l, cm3). For all instances the available number

of vehicles is fixed (limited fleet), and some instances have a heterogeneous fleet. In their

paper, the authors provide results for three experiments. First the instances are solved as

3L-CVRP problems in Gendreau formulation. Second the instances are treated again as

3L-CVRP instances but this time the constraints (C6) – (C8) are required (instead of (C5) and

(C4), see 3.2). In the third experiment the same constraints are required as in the second one

but this time splitting deliveries is allowed.

Since we want to minimize the number of used vehicles as well as the total travel distance

we have modified the Ceschia instances. We have kept the same nodes and boxes but have

changed to an unlimited homogeneous fleet. For the original instances SD-CSS5, SD-CSS7,

SD-CSS8 and SD-CSS11 with heterogeneous fleet we have chosen the smallest vehicle type

(dimensions 268×247×1362 cm3) for our modified instances. We consider only the Gendreau

formulation of 3L-CVRP and 3L-SDVRP, i.e. constraints (C6) – (C8) are not required.

The modified Ceschia instances are treated as 3L-SDVRP-f and 3L-SDVRP-o problems.

The results are summarized in Table 6 that is organized as Table 5. Direct trips as a result of

forced splitting only occur for instance SD-CSS3, this is consistent with Table 2 of Ceschia et

al. (2013). Moreover, for a comparison the results of Ceschia et al. for their original (not

modified) instances with Gendreau formulation are also listed; since splitting is not allowed in

 23

this case, there is no feasible solution of instance SD-CSS3 and this instance is not taken into

account in the comparison (see line Total-12).

Compared to Ceschia et al. (2013) better results are reached for problem variant

3L-SDVRP-f. The mean improvement regarding the number of vehicles amounts to 6.3%

while the mean ttd improvement is 0.9% if the best 3L-SDVRP-f solutions are compared (see

Total-12). Moreover, the run times of SDVRLH2 are about one order of magnitude lower than

the run times reported by Ceschia et al.

A comparison of our results for the problem variants 3L-SDVRP-f and 3L-SDVRP-o

proves that for the (modified) Ceschia instances optional splits lead to better solutions. The

improvement in terms of vehicle numbers is 2.7% and the ttd improvement stands at 3.1%

when the best solutions are compared. For 10 of 13 instances the best solution could be

improved (marked bold in Table 6). The comparison of the reached average solution quality

does confirm this outcome. The average volume utilizations of the loading spaces in the best

solutions amount to 44.1% (3L-SDVRP-f) and 45.6% (3L-SDVRP-o) and can again be seen

as satisfactory (see 5.2). The increase of run times is about 19.6% with variant 3L-SDVRP-o.

Table 6: Results for (modified) Ceschia instances.

Instance SDVRLH2, forced splitting SDVRLH2, optional splitting Ceschia et al., 2013

 Avg Best Avg Best Best
 v ttd rt (s) v ttd v ttd rt (s) v ttd v ttd rt (s)
SD-CSS1 5.0 5543.6 0.2 5 5467.4 5.0 5238.5 0.9 5 4941.8 5 5084.1 351.2

SD-CSS2 17.0 13044.5 3.0 17 13044.5 14.0 11929.8 8.4 14 11620.2 13 11879.9 4709.1

SD-CSS3 24.0 16327.6 21.1 24 16154.0 23.0 16302.1 36.4 23 15800.9 - - -

SD-CSS4 14.1 12958.5 13.3 14 12700.3 14.0 12826.7 27.0 14 12655.5 12 11175.2 5646.8

SD-CSS5* 17.0 14513.8 19.5 17 14513.8 17.0 14513.8 33.5 17 14513.8 12 10451.0 10000.0

SD-CSS6 17.9 15850.9 36.7 17 16021.3 17.0 15883.7 70.2 17 15332.5 32 21487.6 1109.7

SD-CSS7* 13.2 12330.1 47.3 13 12084.8 13.0 12206.6 73.0 13 11804.4 10 10339.7 6986.1

SD-CSS8* 25.0 19747.2 44.3 25 19474.4 23.0 19709.8 123.3 23 19225.8 36 21908.7 4650.8

SD-CSS9 20.6 16638.1 133.7 20 16585.7 20.0 16512.9 220.5 20 16015.0 23 17258.0 1694.6

SD-CSS10 18.4 16380.4 205.1 18 16079.4 18.0 16432.6 273.8 18 15874.5 18 11865.1 9210.1

SD-CSS11* 21.1 18871.3 1825.5 21 18593.2 21.1 18871.3 1822.7 21 18593.2 13 24843.1 1443.5

SD-CSS12 45.8 37144.5 1135.0 45 36793.9 44.0 37261.3 1803.6 44 36311.5 48 34256.1 1734.7

SD-CSS13 25.0 21977.5 1782.0 25 21338.6 25.0 22047.5 1802.2 25 21694.3 31 26342.9 5490.1

Total 264.1 17025.2 405.1 261 16834.7 254.1 16902.8 484.3 254 16491.0
Total-12 240.1 17083.4 437.1 237 16891.4 253 17241.0 4418.9

*: instance with only one vehicle type, i.e. with the smallest type of the corresponding original instance.

5.4 Experiments with B-Y instances
To further test our algorithm, we have introduced a new set of 20 B-Y instances which are

constructed by combining 5 CVRP instances from Christofides et al. (1979) and 200 CLP

instances by Bischoff & Ratcliff (1995).

We have chosen the first 5 CVRP instances C1-C5 with n ranging between 50 and 199.

To generate 3L-SDVRP instances we have added boxes and loading spaces using the CLP

instances by Bischoff and Ratcliff (1995) with 3 (test case BR1) and 20 box types (test case

BR7). We use these two test cases in order to ensure two strongly different levels of box

heterogeneity. For the loading spaces the dimensions of a 20 feet container are taken. The

weight related data are derived from the demands and capacities of the CVRP instances. Each

fifth box of a customer is set fragile.

For one-dimensional SDVRP instances the largest savings are obtained if the average

customer demand is just above half of the vehicle capacity and the variance of the customer

 24

demands is low (Archetti and Speranza, 2012, p. 9). Therefore, we have constructed for ten

instances customer box sets where the ratio � of the total box volume and the loading space

volume is just above 50% for each individual customer. For the other ten instances we have

generated box sets where � is circa 20% per customer, thus a tour has mostly less than five

customers. A summary of the 20 B-Y instances is given in Table 7 (M, bt stand for the

number of boxes and the number of box types, respectively, �-mean represents the mean

value of � over all customers).

Table 7: Summary of the B-Y instances.

Instance n M bt �-mean (%) Instance n M bt �-mean (%)

B-Y1 50 3535 3 51.8 B-Y2 50 1295 3 19.0

B-Y3 50 3377 20 50.9 B-Y4 50 1442 20 22.0

B-Y5 75 5218 3 50.3 B-Y6 75 2135 3 21.6

B-Y7 75 5116 20 52.4 B-Y8 75 2054 20 20.5

B-Y9 100 6861 3 50.1 B-Y10 100 2854 3 21.4

B-Y11 100 6866 20 52.5 B-Y12 100 2680 20 20.7

B-Y13 150 10356 3 51.2 B-Y14 150 4508 3 20.8

B-Y15 150 10082 20 52.1 B-Y16 150 3904 20 20.7

B-Y17 199 14230 3 51.5 B-Y18 199 5790 3 20.3

B-Y19 199 13058 20 51.3 B-Y20 199 5797 20 22.2

The results for the B-Y instances are indicated in Table 8 that is organized similar to Table

5. Additional columns include the mean filling rates fr of the vehicle loading spaces as

percentages. In the last three lines sums are presented for the vehicle numbers v and averages

for all other quantities. The lines Total-50 and Total-20 include the best v, ttd and fr values for

the instance subgroups where � is circa 50% and 20%, respectively.

Table 8: Results for B-Y instances.

Instance SDVRLH2, forced splitting SDVRLH2, optional splitting
 Avg Best Avg Best
 v ttd rt (s) v ttd fr (%) v ttd rt (s) v ttd fr (%)
B-Y1 50.0 2402.2 40.4 50 2402.2 51.8 37.0 2081.6 152.1 37 2081.6 70.1

B-Y2 16.0 1035.9 59.3 16 1019.4 59.3 15.5 1055.3 96.0 15 1044.2 63.2

B-Y3 50.0 2402.2 41.0 50 2402.2 50.9 37.0 2071.0 156.2 37 2071.0 68.7

B-Y4 19.1 1181.0 54.6 19 1163.9 57.9 18.0 1184.6 94.7 18 1149.6 61.1

B-Y5 75.0 3630.5 270.8 75 3630.5 50.3 54.0 2961.2 760.5 54 2961.2 69.8

B-Y6 25.9 1582.8 323.6 25 1573.5 64.8 25.0 1570.7 448.6 25 1541.4 64.8

B-Y7 75.0 3630.5 271.3 75 3630.5 52.4 57.0 3215.8 838.5 57 3215.8 69.0

B-Y8 27.1 1661.5 346.8 27 1643.6 56.9 26.0 1645.0 503.5 26 1606.8 59.0

B-Y9 100.0 4989.8 1064.1 100 4989.8 50.1 71.0 4014.9 1802.6 71 4014.9 70.5

B-Y10 34.7 2133.5 1817.3 34 2077.3 63.1 34.7 2133.5 1814.8 34 2077.3 63.1

B-Y11 100.0 4989.8 1060.7 100 4989.8 52.5 76.0 4386.7 1803.1 76 4386.6 69.1

B-Y12 35.5 2181.1 1342.4 35 2167.8 59.1 34.0 2173.6 1762.0 34 2151.3 60.8

B-Y13 149.0 7341.9 320.6 149 7341.9 51.6 109.0 6043.4 1811.7 109 6022.4 70.5

B-Y14 49.3 2951.6 1818.9 49 2915.4 63.7 48.0 2942.1 1802.8 48 2888.3 65.0

B-Y15 150.0 7360.5 320.6 150 7360.5 52.1 117.6 6477.7 1804.6 117 6451.1 66.7

B-Y16 53.4 3081.0 1594.5 53 3049.4 58.5 51.9 3089.8 1804.1 51 3177.8 60.8

B-Y17 198.0 9558.3 1098.2 198 9558.3 51.8 148.0 8462.3 1808.1 148 8456.4 69.3

B-Y18 65.3 3689.1 1969.6 64 3665.6 63.0 65.6 3676.7 1810.8 65 3647.1 62.1

B-Y19 199.0 9607.8 1106.2 199 9607.8 51.3 154.0 9298.8 1808.9 154 9296.4 66.2

B-Y20 75.2 4190.0 1875.9 74 4156.4 59.6 74.6 4298.5 1805.6 73 4351.4 60.4

Total 1547.5 3980.0 839.8 1542 3967.3 56.0 1253.9 3639.2 1234.5 1249 3629.6 65.5

Total-50 1146 5591.4 51.5 860 4895.7 69.0

Total-20 396 2343.2 60.6 389 2363.5 62.0

 25

The main outcome here is that much better results are reached by optional splits. The

improvements are 19% for the number of vehicles, 9.5 %-points for the volume utilization

and 8.5% for the total travel distance if the best solutions are compared. An improvement has

been reached in 18 of 20 instances (marked bold in Table 8). Again, the comparison of

average solutions confirms this result. The average run time for the variant with optional

splits is about 47% higher than for the variant with forced splits. However, with circa 20

minutes on average the run times remain moderate for the variant with optional splits, too. As

expected forced splits proved to be not necessary for any instance.

For the subgroup with � � 20% the improvements are relatively small and the ttd values

are even slightly worse if optional splits are admissible. However, in the other subgroup with

� � 50% large improvements are made by optional splits (see line Total-50). For example, the

average volume utilization grows by 17.5 %-points. Thus, the results for the 3D case are in

line with the above quoted conclusion by Archetti and Speranza (2012).

6 Conclusion

In this work, we deal with the vehicle routing problem with split delivery and three

dimensional loading constraints (3L-SDVRP) which is similar to the 3L-CVRP formulation

by Gendreau et al. (2006) except for the only-one-visit assumption. Two problem variants are

introduced, namely the 3L-SDVRP with forced splits and optional splits, respectively. In the

former variant only indispensable splits are allowed while splitting deliveries is totally free in

the latter variant.

We propose an algorithm that is able to cope with both problem variants. The method

follows the principle "Packing first, routing second", thus the packing and routing task are

solved in two strictly separate steps. In the packing step patterns for one or two customers are

constructed that consist of vertical layers. This ensures simple packing plans which are easy

to implement in practice. Forced splits are realized by direct trips to single customers and

related packing patterns that fill nearly the complete loading space. The packing is carried out

by a well-known GA and some constructive heuristics. The routing is done by a local search

algorithm that is based on a giant tour representation. Optional splits utilize the layer structure

of customer packing patterns.

Our algorithm is applied to three different sets of instances with industrial as well as academic

origin. Comparisons to existing 3L-SDVRP methods prove a good quality of the results. Moreover,

they are calculated in relatively short running times. The results with optional splits are generally

better than the results calculated only with forced splits. This is especially true for instances with

higher box volume / vehicle volume ratio per customer where still no direct tours are necessary

though. Thus, it has been proven that by optional splits tours and travel distance can be saved

also in the context of routing problems with three-dimensional loading constraints. Future

work should enable the hybrid algorithm to cope with further loading constraints that occur in

practice, for example the axle weight or load bearing strength constraint.

Acknowledgments
This research has support from NSFC research grant 71371162 and Fujian Fumin Foundation.

 26

References
Archetti, C., Bianchessi, N., & Speranza, M. G. (2011). A column generation approach for the split delivery

vehicle routing problem. Networks, 58, 241-254.

Archetti, C., Bianchessi, N., & Speranza, M. G. (2014). Branch-and-cut algorithms for the split delivery vehicle

routing problem. European Journal of Operational Research, 238(3), 685-698.

Archetti, C., Savelsbergh, M. W. P., & Speranza, M. G. (2008). To split or not to split: that is the question.

Transportation Research Part E: Logistics and Transportation Review, 44, 114–123.

Archetti, C., & Speranza, M. G. (2012). Vehicle routing problems with split deliveries. International transactions
in operational research, 19(1-2), 3-22.

Archetti, C., Speranza, M. G., & Hertz, A. (2006). A tabu search algorithm for the split delivery vehicle routing

problem. Transportation science, 40(1), 64-73.

Bartók, T., & Imre, C. (2011). Pickup and Delivery Vehicle Routing with Multidimensional Loading Constraints.

Acta Cybernetica, 20, 17-33.

Belenguer, J. M., Martinez, M. C., & Mota, E. (2000). A lower bound for the split delivery vehicle routing

problem. Operations Research, 48, 801–810.

Berbotto, L., García, S., & Nogales, F. J. (2014). A randomized granular tabu search heuristic for the split delivery

vehicle routing problem. Annals of Operations Research, 222(1), 153-173.

Bischoff, E. E., & Ratcliff, M. S. W. (1995). Issues in the development of approaches to container loading. Omega,

23(4), 377-390.

Bortfeldt, A. (2012). A hybrid algorithm for the capacitated vehicle routing problem with three-dimensional

loading constraints. Computers & Operations Research, 39(9), 2248-2257.

Bortfeldt, A., & Gehring, H. (2001). A hybrid genetic algorithm for the container loading problem. European
Journal of Operational Research, 131(1), 143-161.

Ceschia, S., Schaerf, A. & Stützle, T. (2013). Local search techniques for a routing packing problem. Computers &
Industrial Engineering 66, 1138-1149.

Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem. In N. Christofides, A. Mingozzi, P.

Toth, & C. Sandi (Eds.), Combinatorial optimization (pp. 315–338). Chichester: John Wiley & Sons Ltd.

Dror, M., Laporte, G., & Trudeau, P. (1994). Vehicle routing with split deliveries. Discrete Applied Mathematics,

50(3), 239-254.

Dror, M., & Trudeau, P. (1989). Savings by split delivery routing. Transportation Science, 23(2), 141-145.

Dror, M., & Trudeau, P. (1990). Split delivery routing. Naval Research Logistics (NRL), 37(3), 383-402.

Fuellerer, G., Doerner, K. F., Hartl, R. F., & Iori, M. (2010). Metaheuristics for vehicle routing problems with

three-dimensional loading constraints. European Journal of Operational Research, 201(3), 751-759.

Gendreau, M., Iori, M., Laporte, G., & Martello, S. (2006). A tabu search algorithm for a routing and container

loading problem. Transportation Science, 40(3), 342-350.

Helsgaun, K. (2009): General k-opt submoves for the Lin–Kernighan TSP heuristic. Mathematical Programming
Computation, 1 (2-3).

Hokama, P., Miyazawa, F. K., & Xavier, E. C. (2016). A branch-and-cut approach for the vehicle routing problem

with loading constraints. Expert Systems with Applications, 47, 1-13.

Iori, M., & Martello, S. (2010). Routing problems with loading constraints. Top, 18(1), 4-27.

Irnich, S., Schneider, M., & Vigo, D. (2014). Chapter 9: Four Variants of the Vehicle Routing Problem. In Vehicle
Routing: Problems, Methods, and Applications, Second Edition, 241-271. Society for Industrial and Applied

Mathematics.

Junqueira, L., Oliveira, J. F., Carravilla, M. A., & Morabito, R. (2013). An optimization model for the vehicle

routing problem with practical three dimensional loading constraints. International Transactions in

Operational Research, 20(5), 645-666.

Koch, H., Bortfeldt, A., & Wäscher, G. (2018). A hybrid algorithm for the vehicle routing problem with backhauls,

time windows and three-dimensional loading constraints. OR Spectrum 40, 1029-1075.

Li, X., Yuan, M., Chen, D., Yao, J., & Zeng, J. (2018). A Data-Driven Three-Layer Algorithm for Split Delivery

Vehicle Routing Problem with 3D Container Loading Constraint. In KDD ’18: The 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, August 19–23, 2018, London, United

Kingdom. ACM, New York, NY, USA, 528-536.

 27

Mahvash, B., Awasthi, A., & Chauhan, S. (2017). A column generation based heuristic for the capacitated vehicle

routing problem with three-dimensional loading constraints. International Journal of Production Research,

55(6), 1730-1747.

Männel, D., & Bortfeldt, A. (2016). A hybrid algorithm for the vehicle routing problem with pickup and delivery

and three-dimensional loading constraints. European Journal of Operational Research, 254(3), 840-858.

Miao, L., Ruan, Q., Woghiren, K., & Ruo, Q. (2012). A hybrid genetic algorithm for the vehicle routing problem

with three-dimensional loading constraints. RAIRO-Operations Research, 46(1), 63-82.

Moreno, L., Poggi de Aragão, M., & Uchoa, E. (2010). Improved lower bounds for the split delivery vehicle

routing problem. Operations Research Letters, 38, 302–306.

Moura, A., & Oliveira, J. F. (2009). An integrated approach to the vehicle routing and container loading problems.

OR Spectrum, 31(4), 775-800.

Ozbaygin, G., Karasan, O., & Yaman, H. (2018). New exact solution approaches for the split delivery vehicle

routing problem. EURO Journal on Computational Optimization, 6(1), 85-115.

Pace, S., Turky, A., Moser, I., & Aleti, A. (2015). Distributing fibre boards: a practical application of the

heterogeneous fleet vehicle routing problem with time windows and three-dimensional loading constraints.

Procedia Computer Science, 51, 2257-2266.

Pollaris, H., Braekers, K., Caris, A., Janssens, G. K., & Limbourg, S. (2015). Vehicle routing problems with

loading constraints: state-of-the-art and future directions. OR Spectrum, 37(2), 297-330.

Rajappa, G. P., Wilck, J. H., & Bell, J. E. (2016). An Ant Colony Optimization and Hybrid Metaheuristics

Algorithm to Solve the Split Delivery Vehicle Routing Problem. International Journal of Applied Industrial
Engineering, 3(1), 55-73.

Reil, S., Bortfeldt, A., & Mönch, L. (2018). Heuristics for vehicle routing problems with backhauls, time windows,

and 3D loading constraints. European Journal of Operational Research, 266(3), 877-894.

Shi, J., Zhang, J., Wang, K., & Fang, X. (2018). Particle Swarm Optimization for Split Delivery Vehicle Routing

Problem. Asia-Pacific Journal of Operational Research, 35(2), 1840006.

Tao, Y. & Wang, F (2015). An effective tabu search approach with improved loading algorithms for the

3L-CVRP. Computers & Operations Research, 55, 127-140.

Tarantilis, C. D., Zachariadis, E. E., & Kiranoudis, C. T. (2009). A hybrid metaheuristic algorithm for the

integrated vehicle routing and three-dimensional container-loading problem. IEEE Transactions on Intelligent
Transportation Systems, 10(2), 255-271.

Vidal, T., Crainic, T.G., Gendreau, M., & Prins, C. (2014). A unified solution framework for multi-attribute vehicle

routing problems. European Journal of Operational Research, 234(3), 658-673.

Wei, L., Zhang, Z., & Lim, A. (2014). An adaptive variable neighborhood search for a heterogeneous fleet vehicle

routing problem with three-dimensional loading constraints. IEEE Computational Intelligence Magazine 9(4),

18-30.

Wilck, J.H., & Cavalier, T.M. (2012). A Genetic Algorithm for the Split Delivery Vehicle Routing Problem.

American Journal of Operations Research, 2, 207-216.

Wisniewski, M., Ritt, M., & Buriol, L.S. (2011). A Tabu Algorithm for the Capacitated Vehicle Routing Problem

with Three-dimensional Loading Constraints. Anais do XLIII Simpósio Brasileiro de Pesquisa Operacional.
Ubatuba, Brazil, 1502-1511.

Yi, J., & Bortfeldt, A. (2018). The Capacitated Vehicle Routing Problem with Three-Dimensional Loading

Constraints and Split Delivery – A Case Study. In Operations Research Proceedings 2016, 351-356, Springer,

Cham.

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2012). The pallet-packing vehicle routing problem.

Transportation Science, 46(3), 341-358.

Zhang, D., Cai, S., Ye, F., Si, Y.W., & Nguyen, T.T. (2017). A hybrid algorithm for a vehicle routing problem

with realistic constraints. Information Sciences, 394/395, 167-182.

Zhu, W., Qin, H., Lim, A., & Wang, L. (2012). A two-stage tabu search algorithm with enhanced packing heuristics

for the 3L-CVRP and M3L-CVRP. Computers & Operations Research, 39(9), 2178-2195.

 28

Appendix

1) Procedure for building stacks from original boxes for a given customer
The procedure of stack building for a given customer c is organized in two steps. First stacks

are built from boxes of only one box type (of customer c) where all boxes have the same

spatial orientation which must always observe constraint (C3). Assume that nb boxes of a box

type with height h are available. Then nbst = H/h boxes can be stacked at most and the

procedure yields q = nb/nbst (q � 0) stacks of maximal height nbst.h and at most one stack for

the remaining r = nb % nbst boxes (% is the modulo operator, r � 0).

In the second step mixed stacks (with one or more box types of customer c) are built from

the pure stacks (with one box type) resulting from the first step. In what follows we will speak

of stacks instead of mixed stacks and of boxes instead of pure stacks. Stacks are then

generated one by one until the set of boxes is exhausted. If a new stack is to be generated the

still available box with the largest base area is taken as the lowest box. As the next box of a

stack among all suitable boxes the one with the largest base area is taken. A box is suitable as

the next box for a stack if it is not yet stacked, can be placed regarding the height H and its

placement meets the constraints (C1), (C4) and (C5). In general the next box is placed on the

stack so that its length and width run parallel to the length and width, respectively, of the

previous box. With regard to vertical stability (C4), however, the box is rotated by 90° in the

horizontal plane where necessary. With each new box the bounding cube of the stack is

adapted if necessary. If a stack cannot be extended because there is no suitable box, it is

considered complete. For a complete stack the maximum number of copies is determined

(with regard to the box set of the customer c) and implemented.

The stacks available at the end of the two stage procedure are taken as boxes in the

following generation of patterns.

2) First procedure for generating 2D-SPs
In Figure 12 the first procedure for generating a 2D-SP based on two 1C-SP for the customers

c1 and c2 is depicted. For the sake of brevity some details are omitted.

Algorithm generate_2C_SP_1(in: customer c1, customer c2, problem data, parameters,
 out: success, pattern 2C-SP)
 success := 0 // no feasible 2C-SP pattern for c1 and c2
 // pass c1-layers in decreasing order of layer-depths and try to disintegrate each c1-layer

for each c1-layer l1 do
// try each c2-layer as accomodating layer
for each c2-layer l2 do
 provide residual spaces in l2 and sort them by increasing volume
 no_generated_placements := 0
 for each box b in l1 do
 determine placement of b in a residual space rs with spatial orientation ov

 if (placement was found) then
 update residual space rs
 no_generated_placements := no_generated_placements + 1
 endif
 endfor
 if number of generated placements = number of boxes in l1 then
 success := 1 // feasible 2C-SP pattern for c1 and c2 found
 create 2C-SP from remaining c2-layers, generated single mixed layer and

 29

 remaining c1-layers (seen from cabin)
 goto end
 endif
 endfor
 endfor
end.

Figure 12: First procedure for generating 2C-SP.

For determining a placement of a box b of a c1-layer the residual spaces provided for a

c2-layer are went through in sorting sequence. The first residual space where the box fits is

taken and the box is placed in the corner of the residual space that is nearest to origin. The

spatial orientation ov of the box is chosen preferably in that way that its larger horizontal side

dimension runs parallel to the smaller horizontal dimension of the residual space. After a

placement for a box has been determined the related residual space is updated. The old

residual space rs is replaced by a new residual space within the old one where the placed box

is taken into account of course. Here two cases are to be differentiated. If the placed box is

not fragile the new residual space is created above the box just placed. If it is fragile the new

residual space is created besides or in front of the placed box. The variant with greater volume

of the new residual space is taken.

3) Second procedure for generating 2D-SPs
The second procedure for generating 2D-SPs works in three steps. In the first step, some

layers with worst volume utilization of both involved customer c1 and c2 are disintegrated and

their boxes are collected in set Bfree. Let llrem be the total length of all removed layers. In the

second step, stacks are constructed from all boxes of Bfree. In the third step, a new layer with

length llnew is formed by these stacks. At the same time, the length reduction llrem – llnew is

checked; only if it is greater than zero the procedure has been successful in the given trial.

Subsequently the generation of stacks and their placement in a new layer are described more

thoroughly.

Generation of stacks
Stacks are generated by means of the algorithm depicted in Figure 13.

Algorithm generate_stacks(in: customer c1, customer c2, free boxes Bfree, problem data, parameters,
 out: set of stacks Stacks)
 Stacks :=
 // initialize Stacks
 // create stacks as long as Bfree is not empty

while |Bfree| > 0 do
// create best possible stack Stbest for set Bfree by recursive procedure
Stbest := gen_one_stack(c1, c2, Bfree)
Stacks : = Stacks U {Stbest}
update Bfree

 endwhile
end.

Figure 13: Algorithm generate_stacks.

The stacks are generated one by one until the box set Bfree is empty. Per cycle a best stack

Stbest is constructed for the given set Bfree by the recursive procedure gen_one_stack() which

works as follows:

1) Per procedure call a current stack (initially an empty stack) is extended by a new box

 30

on top in different variants. The maximum number of variants is given by the

parameter maxcands. The boxes in Bfree are sorted by their base area in descending

order. The first maxcands feasible boxes that follow the old box on top in the sorting

sequence are chosen as new top box of the current stack. In the case of an empty

stack the candidate boxes are the first maxcands feasible boxes.

2) A feasible candidate for a new top box must satisfy the following criteria:

- the height of the extended stack must not exceed the height of the loading space,

- the constraints (C3) – (C5) are to be observed,

- a stack might include boxes from customers c1 and c2; however, to satisfy the LIFO

 constraint (C2) no box of c2 must be packed above a box of c1.

If one of the criteria is not satisfied the respective box is skipped.

3) The boxes of a stack are oriented in that way that their smaller horizontal dimensions

run parallel to each other. This principle is omitted, though, if the vertical stability

constraint (C4) would be violated then.

4) A stack is complete, if no further box cannot be placed on top. In this case it is

checked whether the stack is a new best stack Stbest. The best stack is the complete

stack with maximal filling rate. It is determined as quotient of the stowed box volume

and the volume of the bounding cube of the stack. Note that the bounding cube is

extended up to the roof of the loading space.

5) The generation of the best stack for a given set Bfree terminates if there is no stack

that could be extended anymore.

Building a new layer by stacks
The stacks of set Stacks, written here as St[i], i = 1,…,nst, are placed in one or more rows that

run parallel to the width of the loading space. All stacks together form a new layer of length

llnew. This layer follows the remaining c2-layers and precedes the remaining c1-layers (seen

from cabin). A reduction of the pattern length is achieved if and only the difference llrem –

llnew is positive.

A stack St[i], i = 1,…,nst, has the following components: (1) hd_min and hd_max:

minimum and maximum horizontal dimension of related bounding cube; (2) hc2top: the

maximal height of the top face of boxes of customer c2 in a stack; note that hc2top = 0, if there

are no c2-boxes and hc2top = H if there are no c1-boxes; (3) ov: spatial orientation; ov is set to 0

if hd_min runs parallel to the length of the loading space (i.e. parallel to x-axis) and 1

otherwise; (4) rc_x and rc_y: x- and y-coordinate of the reference corner (i.e. corner of the

stack nearest to origin). Note that only the components (1) and (2) are input data.

The algorithm for building a new mixed layer by stacks is shown in Figure 14. First some

initializations are made. The coordinates y_curr and x_curr of the reference corner of the next

placement are set to zero and to x_max_c2, i. e. the maximum x-coordinate of all remaining

c2-layers; by this the first row of stacks follows immediately to the last c2-layer. Note that the

x-coordinates of all placements in a row coincide. The length of the next row lrow and the

maximum x-coordiante of a stack x_max are also set to zero.

The stacks St[i], i = 1,…,nst, are sorted by hc2top in decreasing order and are then placed in

this sorting sequence. This sorting ensures that the LIFO restriction is met; seen from the

vehicle rear, it can never happen that a c2-box is placed above or before a c1-box.

To place a stack first its feasible orientation variants are calculated. The reference corner

 31

of a stack is always set to the point (x_curr, y_curr). An orientation variant of a stack (0 or 1,

see above) is possible if the available width W – y_curr is not exceeded. Moreover, the

difference of the maximum x-coordinate of the stack and x_max_c2 must be smaller than

llrem (see above). We can differentiate four cases:

Case 1: The stack can only be placed in orientation variant 0. Then the stack is placed

accordingly and the variables y_curr, lrow and x_max are updated.

Case 2: The stack can only be placed in orientation variant 1. Case 2 is handled as case 1.

Case 3: Both orientation variants are feasible. In this case orientation variant 1 is chosen if

this does not lead to an increase of lrow; otherwise variant 0 is selected. Preferring orientation

variant 1 contributes to a better utilization of the space of the current row. Again, the variables

y_curr, lrow and x_max are updated accordingly.

Case 4: None of the orientation variants is feasible. In this case placements are continued

at the left end of the next row and the stack not yet placed is now placed there. The row length

lrow is set again to zero. In the exceptional case that a placement in the next row at the left

end (y_curr = 0) is also not feasible a positive length reduction cannot be achieved for the

given set of stacks and the procedure terminates. Otherwise the length reduction is returned at

the end.

Algorithm place_stacks(in: stacks St[i], i = 1,…,nst, maximum x-coordinate of remaining
 c2-layers x_max_c2, total length of removed layers llrem, problem data,
 out: length reduction llrem – llnew, set of placed stacks St[i], i = 1,…,nst)
 x_curr := x_max_c2 // x-coordinate of reference corner of next placement
 y_curr := 0 // y-coordinate of reference corner of next placement
 x_max := 0 // max. x-coordinate of placed stacks
 lrow := 0 // length (x-dimension) of current row
 sort stacks St[i], i = 1,…,nst, w.r.t. hc2top in descending order

 // place all stacks in sorting sequence

for i := 1 to nst 0 do
// check feasible orientation variants
ov_0 := y_curr + St[i].hd_max ≤ W and x_curr + St[i].hd_min < llrem + x_max_c2
ov_1 := y_curr + St[i].hd_min ≤ W and x_curr + St[i].hd_max < llrem + x_max_c2
// examine cases
if ov_0 and (not ov_1 or St[i].hd_max > lrow) then
 St[i].rc_x := x_curr; St[i].rc_y := y_curr; St[i].ov := 0
 y_curr := y_curr + St[i].hd_max
 lrow := MAX(lrow, St[i].hd_min); x_max := MAX(x_max, x_curr + St[i].hd_min)
else if ov_1 and (not ov_0 or St[i].hd_max ≤ lrow) then
 St[i].rc_x := x_curr; St[i].rc_y := y_curr; St[i].ov := 1
 y_curr := y_curr + St[i].hd_min
 lrow := MAX(lrow, St[i].hd_max); x_max := MAX(x_max, x_curr + St[i].hd_max)
else // ov_0 = 0 and ov_1 = 0
 if y_curr = 0 then return 0 endif // stack i not to place, length reduction ≤ 0!
 x_curr := x_curr + lrow; y_curr := 0; lrow := 0; i := i - 1 // stack i not yet placed!
endif

endfor
llnew := x_max – x_max_c2 // length of new mixed layer
return llrem – llnew // positive length reduction!

end.

Figure 14: Algorithm place_stacks.

Otto von Guericke University Magdeburg
Faculty of Economics and Management
P.O. Box 4120 | 39016 Magdeburg | Germany

Tel.: +49 (0) 3 91 / 67-1 85 84
Fax: +49 (0) 3 91 / 67-1 21 20

www.ww.uni-magdeburg.dewww.fww.ovgu.de/femm

ISSN 1615-4274

