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Abstract In the challenging environment of attended home deliveries, pricing of different delivery

options can play a crucial role to ensure profitability and service quality of retailers. To differentiate

between standard and premium delivery options, many retailers include time windows of various lengths

and fees within their offer sets. Customers want short delivery time windows, but expect low delivery

fees. However, longer time windows can help to maintain flexibility and profitability for the retailer. We

present flexible dynamic time window pricing policies that measure the impact of short time windows on

the underlying route plan during the booking process and set delivery fees accordingly. Our goal is to nudge

customers to choose time windows that do not overly restrict the flexibility of route plans. To this end,

we introduce three dynamic pricing policies that consider temporal and/or spatial routing and customer

characteristics. We consider customer behavior through a nested logit model, which is able to mimic

customer choice for time windows of multiple lengths. We perform a computational study considering

realistic travel and demand data to investigate the effectiveness of flexible dynamic time window pricing.

Our pricing policies are able to outperform static pricing policies that reflect current business practice.

Keywords Dynamic Pricing, Time Windows, Customer Acceptance, Attended Home Deliveries, Vehicle

Routing with Time Windows, Route Flexibility
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1 Introduction

The worldwide growth of e-commerce has led to a rapid increase in demand for home delivery services.

New online businesses continue to enter the market, and also brick-and-mortar retailers are expanding

through online channels providing pick-up or home delivery services. At the same time, customers have

high service expectations. For deliveries of groceries or white goods, for example, a customer has to be

present during the delivery, and this requires the use of delivery time windows. Studies have shown that

customers prefer time windows of two hours or less for such deliveries (Mintel 2014). These attended

deliveries are very expensive from a logistics’ point of view, and customers do not want to pay much for

them.

Creating a profitable business model within this environment, especially arranging tight delivery time

windows and maintaining logistics efficiency, is challenging. Hence, retailers need to decide which delivery

options to offer to a customer and at which price. For instance, a brick-and-mortar retailer may want to

differentiate between offering a standard option – the free store pick-up – and a premium delivery option

to the customer’s doorstep within a time window chosen by the customer. Since the latter channel uses

scarce delivery resources, the retailer needs to decide carefully at which price to offer this premium option.

Within this paper, we will use long and short time windows as an illustrative example for standard and

premium delivery options. However, this framework could be easily extended to any multichannel situation

where a retailer has to decide how much to charge for the premium option when it costs the retailer more

in terms of using scarce resources than the standard option.

One of the most challenging applications of e-commerce are online supermarkets, which we will use in

this paper to demonstrate our approach. Profit margins for groceries are known to be low, and therefore

it is important to create cost-efficient last-mile deliveries. A typical booking process includes the selection

of groceries and the choice of a time window for order delivery. For these attended home deliveries, the

customer chooses from a set of possible time windows, and the order is confirmed immediately. We refer to

this step as “order acceptance”. Retailers have to define which time windows to display to each customer

without knowing the overall demand. Offering short delivery time windows decreases the degrees of freedom

that are needed to create efficient delivery routes (Lin & Mahmassani 2002). Less efficient delivery routes

lead to an increase in delivery costs, a loss in the number of customers that can be serviced, and reduce

the retailer’s profit.

To differentiate between standard and premium delivery options or simply to nudge customers to

unpopular time windows, many online supermarkets offer time windows of different lengths and delivery

fees. To define fees for delivery time windows, they have to decide on the number of price points and

whether they want to adapt fees dynamically during the booking process. First, retailers can choose

between a one-price policy (all time windows have the same delivery fee) and a multi-price policy (delivery

fees differ among the time window options). Second, they need to decide whether prices remain static

during the booking process (delivery fees do not change in the course of time) or if prices are dynamic

(delivery fees are adapted dynamically to, e.g., customer or capacity characteristics). In the case of a simple

static one-price policy, customers will base their time window choice solely on time window characteristics

like time of the day. This policy is common among online supermarkets that do not have to balance demand

among the different time window options, and if only time windows of one particular length are offered.

Examples for online supermarkets employing this policy are AllyouneedFresh (Germany), which utilizes

an almost unlimited delivery capacity from DHL, and Picnic (Netherlands), which follows fixed routing

patterns to service customers. Online supermarkets that follow a static multi-price policy include Tesco

(UK), Peapod (US), AlbertHeijn (Netherlands) and Bringmeister (Germany). Usually, these supermarkets

offer less popular time windows at lower delivery fees to help balance demand. For all these policies, short

time windows are available if the customer is willing to pay more. At Tesco, for example, customers have

to pay double and at Bringmeister even five times as much for choosing a 1-hour time window (premium
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option) compared to a 4-hour long time window (standard option).

In our previous paper, we developed time window management mechanisms that consider the flexibility

in the evolving route plans to decide when to offer short and long time windows (Köhler et al. 2019).

Considering temporal and/or spatial characteristics, we showed that systematically offering short or long

time windows can result in more customers accepted while maintaining a high service quality. In the

literature, this is known as slotting. However, withholding short time windows may not be satisfying for

customers. Therefore, within this work, we offer all short time windows, but offer them at different delivery

fees, which is known as pricing. The fees reflect the time window’s impact on routing flexibility. Time

window pricing aims at balancing customers’ willingness to pay (and earning some extra revenue via the

attached delivery fees) with demand offerings at different time window options.

In this work, we present flexible dynamic time window pricing policies that adapt delivery fees accor-

ding to spatial and temporal characteristics of the evolving route plan. In particular, our policies consider

the impact of short time windows on the routing flexibility in the course of the booking process. We extend

approaches from Köhler et al. (2019) and translate them into multi-price policies that determine dynami-

cally how much a retailer should charge a customer for choosing a particular short time window. For this

purpose, we introduce a nested logit customer choice model considering choice probabilities for different

time window lengths. We investigate the effectiveness of our pricing policies in terms of the number of

customers that can be accepted and the resulting sum of fee/overall revenue that can be achieved. We

also examine in which situations our approaches are able to create a higher level of customer service by

accepting more customers within a short time window at no extra costs for the retailer and/or decrease

the customers’ delivery fees relative to a simpler static price policy that reflects common business practice.

The paper is organized as follows. In the next section, we present related literature on time window

pricing and slotting. Then, we formalize our problem and introduce the customer choice model for multiple

time window lengths. We demonstrate and evaluate our approaches with a computational study based on

data from Berlin, Germany. Finally, we conclude the paper with a summary and an outlook on future

work.
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2 Related literature

In this section, we give an overview of approaches that support retailers in the management of delivery

time windows. In particular, retailers can assign delivery fees to time windows to control or influence

customer choice (pricing). They can also limit the availability of time windows systematically (slotting).

Pricing and slotting can be implemented either before the booking process begins (differentiated) or in

real-time while the booking process runs (dynamic). Hence, in total, there are the following four types of

time window management concepts, which we will consider in the following: differentiated pricing, dynamic

pricing, differentiated slotting, and dynamic slotting (Agatz 2009). First, we will present literature that

considers the pricing of time windows, which is also the area we are contributing to with this paper. We

will especially review how routing flexibility and time windows of different lengths can be included in

pricing decisions. Then, since we derive flexibility information from recent slotting approaches, we will

also provide an overview of slotting approaches.

2.1 Pricing of delivery time windows

Charging customers for delivery aims at covering expenses arising from the “last mile” to the customer’s

home and/or influencing customer’s time window choice to enable better utilization of available delivery

resources. Generally, customers do not want to pay much for time-window based deliveries and tend to

cancel the booking process rather than book expensive time windows (Paas et al. 2018). Offering time

windows for a small delivery fee usually results in higher customer satisfaction and more customers willing

to book. In this context, Paas et al. (2018) show that lower delivery fees can even increase the basket value

of a customer’s order. Klein et al. (2017) are the first to follow the idea of differentiated pricing for attended

home deliveries. Routing costs are anticipated to create offline pricing decisions for a retailer. They show

that to influence customer choices, not only the amount of the delivery fee, but also the fee differences

between time window options matter, and even small differences can make a big difference. Although

their approach clearly outperforms static one-price policies, no customer-individual characteristics can be

considered in the pricing decision as is possible with dynamic pricing.

Known from airline industry applications, dynamic pricing is particularly effective to control perishable

resources and demand that is stochastic and price sensitive (Bitran & Caldentey 2003). Agatz et al. (2013)

show that attended home deliveries represent a relevant application for dynamic pricing due to the fixed

delivery capacity that has to be assigned dynamically during the booking process. With dynamic pricing of

attended home deliveries, different delivery fees are attached to time windows during the booking process.

Campbell & Savelsbergh (2006) consider the interaction of incentives and routing costs on the overall profit

during order acceptance. Asdemir et al. (2009) analyze delivery fees in relation to available capacities and

increase the delivery fees as capacities become scarce during the booking process. However, they test their

approach only in a rather simple setting with only two time window options. Yang et al. (2014) analyse

the customer’s willingness to pay as well as the likelihood of choosing a specific time window. Similar to

our approach, they also use an insertion heuristic to decide which time windows can be offered. They build

possible route plans to estimate the costs of a request whereas we measure the current flexibility in our

route plans to enable accepting more customers. Ulmer (2017) employs dynamic pricing for deliveries with

deadlines, proposing a pricing policy that considers the arrival time or the location of a request during the

order horizon. This is similar to our ideas of dynamic flexibility pricing. However, Ulmer (2017) uses fixed

points in time and static vicinity measures of customer location’s in relation to the depot. We consider the

actual utilization of delivery capacities and the proximity of requesting customers relative to our tentative

route plans. This allows us to measure the potential flexibility loss in the underlying route plans more

precisely.

The effectiveness of dynamic pricing strongly correlates with the suitability of offered time windows
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with customers’ temporal and monetary expectations. Thus, in order to create time window offer sets and

assign delivery fees, the expected customer choice behavior needs to be modelled carefully. Vulcano et al.

(2010) name two fundamental challenges when estimating customer choice models: all relevant attributes

that have an impact on customer choice must be considered, and sufficient data has to be available to

estimate customer choice models.

A simple possibility to incorporate customer choice is assuming probabilities for different time window

options. In Campbell & Savelsbergh (2006), incentives are used to influence the customers’ booking

behavior, and these incentives increase the probability of a customer choosing a specific time window by a

given factor. The probabilities of customers for choosing a specific time window as well as customers’ price

sensitivities are assumed to be known. The model ignores interdependencies of time window choices and

does not include a “no-purchase option”. In Klein et al. (2017), a rank-based choice model is presented, in

which customer choice is modelled using preference lists instead of probabilities for each customer. Given

historical order data, creating preference lists seems to be easily doable for a retailer. However, compared

to general choice probabilities, preference lists cannot be adapted easily if the retailer decides to change

the design of time window offerings, for example.

To mimic customer choices in attended home deliveries more thoroughly, the multinomial logit (MNL)

model is commonly used. The MNL is based on the assumption that a customer-individual utility is

attached to each potential alternative and that customers behave as utility maximizers. The customer’s

utility for an alternative a is Ua = Va + Ra. The variable Va depicts the part of a customer’s choice

that is predictable and is hence deterministic (e.g., through setting price incentives). The second part,

Ra, adds randomness to the utility function to consider that estimating customer choice behavior is not

fully foreseeable (Vulcano et al. 2010). Corresponding model variants for attended home deliveries can be

found in Asdemir et al. (2009), Yang et al. (2014), Yang & Strauss (2016), Klein et al. (2016), and Ulmer

(2017). While customer choice can be estimated in a very realistic way with MNL models, incorporating

a MNL model into an online retailer’s booking process can become quite complex and requires historical

data that does not only reflect the actual booking decisions of past customers, but also all time window

alternatives offered to them. In Mackert (2019), a general attraction model (GAM) is proposed, which

is a generalization of the MNL that can represent dissatisfaction of customers better than the MNL in

some cases. For time window pricing, the GAM is limited, and it is rather beneficial for slotting of time

windows.

Our focus is on how customers behave when time windows of different lengths are offered. Customers

want short time windows, but short time windows increase the retailer’s delivery costs. Lin & Mahmassani

(2002) analyse the correlation between decreasing time window size and increasing delivery costs. Gevaers

et al. (2014) quantify logistics costs of customer acceptance and find that the average delivery cost for a

retailer is around 3e for deliveries in 4-hour time windows and almost 6e for deliveries in 1-hour time

windows. Manerba et al. (2018) show that shorter time windows decrease the environmental sustainability

of deliveries. In this paper, we assume that each customer’s offer set contains multiple short and multiple

long time windows. Among these, interdependencies exist, which are not reflected by the standard formu-

lations of the MNL models (Koppelman & Wen 1998). Therefore, we will introduce a nested logit (NL)

model for attended home deliveries that reflects customer choice under different time window lengths. The

relation of MNL and NL is discussed in general in Li & Huh (2011). Recently, the NL has been used to

model travelers choosing between different travel modes (Thrane (2018), Zimmermann et al. (2018)), for

example. We will present more details of our customer choice model in Section 3.4.

2.2 Slotting of delivery time windows

Differentiated slotting can help companies decide on which time windows to offer to serve the expected

demand and best utilize the available delivery resources. Based on historical customer data, for tactical
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slotting, demand is forecasted in an aggregated way to determine which time windows to offer in the

subsequent booking process. Agatz et al. (2011) and Hernandez et al. (2017) determine the required

number of offered time windows to fulfill expected demand in each delivery area. The latter also update

a-priori decisions once customers arrive. Bruck et al. (2017) consider the practicability of differentiated

slotting approaches and show the complexity of creating automated cost-efficient time window designs for

retailers. Motivated by the business model of the online supermarket Picnic (The Netherlands), Visser &

Savelsbergh (2019) examine the value of the tactical decision to offer only one time slot in each delivery

region. However, for all these approaches, the resulting offer sets are based on fixed patterns. We claim

that especially for the competitive field of online retailing, more flexible solutions are needed.

Creating individual time window offerings during the booking process is the core idea of dynamic

slotting. Corresponding approaches consider which customers to accept in which time window. Campbell

& Savelsbergh (2005) were the first to introduce insertion-based dynamic customer acceptance mechanisms

to determine which time windows would be feasible to offer an incoming request. Insertion heuristics often

serve as fast feasibility check and provide information on the cost of inserting a current request as well as

its impact on the route plan (Lu & Dessouky 2006). Ehmke & Campbell (2014) also use insertion heuristics

and show in a real-world setting that dynamic slotting can handle spatio-temporal information of customer

locations and utilize delivery capacities better than a-priori acceptance mechanisms. For this paper, we

assume full knowledge of the customer’s location. Cleophas & Ehmke (2014) control which customers to

accept or reject based on delivery cost and revenue information attached to delivery areas.

Some slotting approaches consider the time of commitment to a time window during the booking

process and its impact on the route plan’s flexibility. Ulmer (2017) and Vareias et al. (2017) approximate

the (optimal) arrival time at a customer and derive “self-imposed” time windows to maintain flexibility.

The latter also minimize the time window length to increase customer service. However, the planned

arrival times of customers can still change significantly as long as more customers are being accepted

and the final route plan is evolving. Köhler et al. (2019) use an insertion heuristic to determine feasible

time windows and combine this with flexibility measures to manage long and short time window offerings

dynamically. They especially measure the impact of short time windows at different stages of the booking

process. Results show that considering temporal and spatial routing characteristics can help to limit the

resulting costs when offering short time windows and hence enable accepting more customers and also

increase the service level. Hungerländer et al. (2017) aim to create the largest possible selection of time

windows for each requesting customer to achieve a higher probability of meeting the customer’s preferred

time window. Shao et al. (2019) propose to only communicate the length of time windows to customers and

adjust beginning and end time of time windows whenever more customer requests are known to limit the

impact of short time window offerings. Given current business practices of online retailers, we assume that

even one single time window offering can be satisfactory as long as the time window meets the customer’

requirements, and that customers expect short time window offerings at a fixed delivery time specified by

the customer and not by the retailer.
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3 Methodology

In this chapter, we formalize our problem and present different ideas on how to create offer sets containing

long and short delivery time windows. Our offer set creation includes dynamic pricing of time windows

according to expected demand and spatio-temporal characteristics of the route plan. We present dynamic

flexible pricing policies and a customer choice model that is able to define delivery fees for offer sets with

different time window lengths.

3.1 Problem description

Our problem is motivated by an online supermarket which operates its own delivery fleet with a fixed

number of vehicles. The retailer offers attended home deliveries and wants to create a high service level to

customers as well as maximize profit. During the booking process customers arrive in real-time and requests

are considered until a specific cut-off time that is early enough to assemble accepted orders sufficiently and

deliver them to the customers subsequently. We do not consider dynamic routing.

More formally, for each request j arriving during the booking process, the retailer presents a time

window offer set Oj from which the customer can choose exactly one time window; the request is confirmed

immediately with the customer choosing one time window out of the offer set. To ensure flexibility and a

high customer service level, offer sets include time windows of different lengths. In particular, each offer

set can contain a set of short and long time windows represented by S and L, respectively. The set of short

time windows, S, contains m non-overlapping short time windows of length ws and a no-purchase option.

The set of long time windows, L, includes n non-overlapping long time windows of length wl and also the

no-purchase option. We describe beginning and ending times of each time window by aS
m ∈ S, aL

n ∈ L and

bSm ∈ S, bLn ∈ L.

The decision on which time windows to offer to a customer at which fee depends on the already

accepted requests, has to be made in real-time, and is based on a flexible pricing policy. We will present

the flexible pricing policies in Section 3.3. If available, all long time windows from set L will be offered for

free. For the short time windows from set S, a particular delivery fee dm is attached to each option. Based

on the pricing policy, the delivery fee dm can either be the same for all offered short time windows or vary

between the short time window options (one-price or multi-price). For all flexible pricing policies, delivery

fees change along the course of the booking process dynamically. For the pricing decision, we consider the

impact of a request on the route plan’s flexibility of a customer choosing a specific short time window.

We use |Q| flexibility stages to categorize the impact on the route plan’s flexibility from low to high. The

current flexibility stage for each request will be computed as described in Section 3.3. The price function

P reflects the price point that is attached to each flexibility stage.

We maintain tentative route plans during the booking process to ensure that we do not exceed the

overall delivery capacity limited by the number of delivery vehicles |V | and the available total time for

servicing customers T (e.g., maximum shift time of a driver). We cannot withdraw a time window promise

after a time window was chosen by the customer. Hence, before presenting time window options within the

offer set, we have to make sure that each time window offering does not violate time window promises of

already accepted customers. Within the offer set Oj , all feasible time windows for the present request j are

displayed, and no time windows are being withheld. If we can find at least one feasible insertion position

for request j, then our offer set will contain at least one corresponding long and short time window attached

to that insertion position.

We assume that we do not have any information about future customers and can only consider the

incrementally available information of already accepted customers during the booking process as well as

the information of the current request. For each request (and all accepted customers), we assume to know

the delivery location, which is a realistic assumption for online supermarkets, since customers usually have
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to reveal at least their zipcode before getting to choose a time window. We assume that there is enough

historical data to estimate the varying demand for different time window options as well as their price

sensitivity with regard to time window length. When choosing a time window, we assume that customers

take the particular time of the day, the time window length as well as the attached delivery fees into

consideration. If we cannot present a suitable time window option, we assume that the customer will

cancel the booking process.

Our objective is to maximize profit as well as to provide good service quality. To achieve this, we

maximize the number of accepted customers and try to accept as many as possible within a short time

window. We will analyze the impact of different flexible time window pricing policies on the retailer’s

revenue in terms of the collected delivery fees and also the amount customers have to pay when booking

a short time window.

3.2 Offer set creation

The creation of a request-specific offer set works as follows. For each request j arriving on the retailer’s

website, our algorithm creates the request-specific offer set Oj containing time window options of different

lengths and different fees. The pricing of the offered time windows is based on a flexible pricing policy,

which considers the request’s spatial and/or temporal characteristics and the resulting impact on the

flexibility in the underlying route plan. To do so, we maintain tentative route plans Rv for each available

delivery vehicle v ∈ V while the booking process is evolving.

The general process of offer set creation is shown in Algorithm 1. For each request j, the algorithm

considers inserting it within any possible insertion position (with the depot being first and last position on

each route). Based on the set of already accepted customers, it is considered within which long and short

time windows out of the time window sets L and S a request could be inserted feasibly and could hence

be offered to a customer. In general, time windows are considered feasible if there is sufficient delivery

capacity to accommodate them and if no already made time window promises are violated. We follow the

ideas of feasibility evaluation presented by Köhler et al. (2019) and summarize their approach below.

To check feasibility within our tentative route plans, we use an insertion-based heuristic which deter-

mines all feasible time windows for request j. We compute the feasible time span svi,i+1 between already

accepted customers i and i + 1 on vehicle v in which the request j can be serviced. To this end, at each

insertion position, we compute the earliest time evi,i+1 we can arrive at a request (which depends on the

previous customer and his/her earliest arrival time evi as well as the service time ui and the time needed

to travel from customer i to request j, the travel time ti,j). We also compute the latest time fv
i,i+1 the

vehicle has to depart at request j (considering the latest arrival time fv
i+1 and service time uj at the next

customer and the time needed to travel there tj,i+1). The time span svi,i+1 reflects the difference between

these values and must be non-negative for the insertion of j to be feasible for any considered time window.

Based on the feasible insertion positions, the corresponding feasible time windows can be derived. To

this end, starting and ending times of all long and short time windows are matched with the time span of

the feasible insertion positions and will be added the sets L′v
i,i+1 and S′v

i,i+1, respectively. For the latter, we

also determine which delivery fee dm to assign based on a flexible pricing policy (AssignDeliveryFee)

presented in detail in Section 3.3. Note that in case the same time window is derived from different

insertion positions and is evaluated with different fees, we always charge the minimum fee.

After we have finalized determining all feasible time windows and the according delivery fees, we can

assemble the resulting time window options in the last step of the algorithm and create a single offer set

Oj for request j (CreateOfferSet). Then, the customer can choose a particular time window option (long

or short, SelectTimeWindow) or cancel the booking process (no-purchase option). Customer behavior is

modeled through a customer choice model presented in Section 3.4. If a requesting customer accepts one

of the offered time windows, the request is inserted in the tentative route plan within the selected time
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window at the cost-minimal insertion point. If needed, the beginning of service for the following customers

on that route is updated (UpdateRoute).

for each request j ∈ J do

Oj ← ∅ // initialize offer set

for each vehicle v ∈ V do

for each insertion position between i and i+1, i ∈ Rv do

S′v
i,i+1 ← ∅, L′v

i,i+1 ← ∅ // initialize time window sets

evi,i+1 ← evi + ui + ti,j

fv
i,i+1 ← fv

i+1 − uj − tj,i+1

svi,i+1 ← fv
i,i+1 − evi,i+1

if svi,i+1 ≥ 0 // insertion position is feasible

then

for each long time window n ∈ L do

if aL
m ≤ evi,i+1 ≤ bLm || aL

m ≤ fv
i,i+1 ≤ bLm || (evi,i+1 ≥ aL

m & bLm ≤ fv
i,i+1) then

L′v
i,i+1 ← L′v

i,i+1 ∪ {n}// add long time window

end

end

end

for each short time window m ∈ S do

if aS
m ≤ evi,i+1 ≤ bSm || aS

m ≤ fv
i,i+1 ≤ bSm || (evi,i+1 ≥ aS

m & bSm ≤ fv
i,i+1) then

AssignDeliveryFee(j, v, i)

S′v
i,i+1 ← S′v

i,i+1 ∪ {m} // add short time window

end

end

return {S′v
i,i+1, L

′v
i,i+1}

Oj ← CreateOfferSet({S′v
i,i+1, L

′v
i,i+1})

end

end

SelectTimeWindow(Oj), UpdateRoute

end
Algorithm 1: Offer set creation for a request j

3.3 Flexible dynamic pricing policies

In this section, we present three flexible dynamic pricing policies that assign delivery fees to short time

windows before presenting them to the requesting customers: Time of Booking (ToB), Location of Request

(LoR), and Impact on Route (IoR). The first policy, ToB, is based on a route plan’s utilization and

considers temporal aspects, i.e., how early or late a request is posed during the booking process. LoR

considers spatial characteristics of the tentative route plan. IoR investigates which part of a tentative

route plan would be affected by a request and sets delivery fees accordingly. To evaluate the benefits of

flexible dynamic pricing policies, we also introduce a benchmark policy that is motivated from current

business practices of online supermarkets.

We need to define a delivery fee dm for each short time window m ∈ S′. For each policy, we present

the underlying idea and classify it according to a pricing scheme category (one-price vs. multi-price and

static vs. dynamic). The flexible dynamic pricing policies consider different metrics describing the impact

of a request on the current route plan’s flexibility. The value of the particular metric is assigned to a
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particular price point according to |Q| different flexibility stages defined by [xq, xq+1], which represent the

minimum and maximum of the flexibility metric for a particular flexibility stage of the policy. We call the

price points assigned to the |Q| flexibility stages of a policy the “configuration” of the policy.

1. Time of Booking (ToB), dynamic one-price policy: Since requests only become known incre-

mentally during the booking process, each accepted request adds more information about how the

final route plan will look like. In Köhler et al. (2019), it has been shown that it can be advantageous

to offer long time windows at the beginning of the booking process and short time windows only

later when there is more information about the structure of the route plan. This idea is quite similar

to markdown pricing: High prices are announced when the product is new on the market, and they

are adapted later once the actual demand is known (Kwon et al. 2012). With ToB, delivery fees are

set according to the point in time a request is posed, evaluating the request in the light of already

consumed delivery resources.

To quantify the ongoing utilization of delivery resources, we measure how much of the available

service time T for the set of available delivery vehicles V has already been consumed by all accepted

customers. The utilized time for delivery consists of the service time at each customer and the travel

times between the customers or depot (0 and z). With each additional portion of the route plan

defined, we assume that the impact of a further request on the route plan decreases. Delivery fees

are set according to flexibility stages, which are defined by xToB
q . The algorithm for setting delivery

fees according to the time of booking is shown in Algorithm 2.

AssignDeliveryFee(j, v, i)

for each stage boundary q ∈ Q do

if xToB
q ≤ (tv0,1 +

∑q−1

i=1
(tvi,i+1 + ui) + tvz,0)/(|V | ∗ T ) < xToB

q+1 then

dm = P (
[
xToB
q , xToB

q+1

]
)

end

end
Algorithm 2: ToB price policy

With ToB, delivery fees change dynamically during the booking process, reflecting the current route

plan’s utilization. However, no individual customer characteristics are taken into account, and all

requests that arrive at the same time during the booking process will be presented all available

short time windows at the same delivery fee. Note that like with all one-price policies, customers

may develop a strategic shopping behavior and may learn about when delivery fees change. With

ToB, we only focus on the time of booking instead of popularity of a time window. Therefore, in

contrast to the benchmark, we can also offer popular time windows at low delivery fees, which can

increase customer satisfaction.

2. Location of Request (LoR), dynamic multi-price policy: With LoR, we want to make de-

livery fees dependent on whether we are already serving customers in the vicinity of a request.

Previous results showed that offering short time windows in the vicinity of already accepted custo-

mers has less impact on the tentative route plans and is hence advantageous for profitability and

service quality (Köhler et al. 2019). To this end, we check if a new request is in the vicinity of

already accepted customers. The vicinity is defined by the relative travel time from the location of

any accepted customer to the location of the new request relative to the total time capacity. We

measure beginning and ending of the flexibility stages through xLoR
q to determine which delivery

10



fee is to be set with the following formulation (Algorithm 3):

AssignDeliveryFee(j, v, i)

for each stage boundary q ∈ Q do

if xLoR
q ≤ tvi,j/(|V | ∗ T ) < xLoR

q+1 or xLoR
q ≤ tvj,i+1/(|V | ∗ T ) < xLoR

q+1 then

dm = P (
[
xLoR
q , xLoR

q+1

]
)

end

end
Algorithm 3: LoR price policy

With LoR, we consider for each insertion position how much travel time we need to connect the

current request to already accepted customers and dynamically adapt the delivery fee. Since the

travel time is different for each insertion position, delivery fees can vary, and the time window

offer set can contain multiple prices. Some online retailers already communicate time windows

that cause smaller detours as “eco-friendly” to foster their selection. We consider communicating

different delivery fees based on a request’s location as quite comprehensible for the customer.

3. Impact on Route (IoR), dynamic multi-price policy: Whereas some parts of the route plan

might already be fixed through customers with short time windows, other parts can provide greater

flexibility and therefore greater potential to accommodate future requests. With IoR, we want to

quantify how much potential the affected part of the route plan has to include further requests. The

longer this time span is, the more likely are major changes in the near future, and we hence may

not want to offer a short time window to maintain flexibility. In particular, we consider the relative

length of the time span that is affected by the insertion of request j at a specific insertion position.

Algorithm 4 summarizes this approach more formally. In particular, the current flexibility stage is

determined according to the size of the insertion span xIoR
q in relation to the total available time T

for all vehicles V .

AssignDeliveryFee(j, v, i)

for each stage boundary q ∈ Q do

if xIoR
q ≤ svi,i+1/(|V | ∗ T ) < xIoR

q+1 then

dm = P (
[
xIoR
q , xIoR

q+1

]
)

end

end
Algorithm 4: IoR price policy

Similar to LoR, IoR sets delivery fees for short time windows dynamically. Since we consider

the request’s impact on flexibility on different parts of the route plan, it is possible that multiple

delivery fees are contained in the offer set, and some short time windows will be offered at lower

prices than others. In contrast to ToB and LoR, however, the pricing of time windows is not as easy

to understand for customers, preventing strategic shopping behavior, but also making it difficult to

communicate how delivery fees are set.

4. Benchmark (B), static multi-price policy: To understand the value of dynamically adapting

delivery fees through flexible pricing policies, we propose to compare their results with a static

multi-price policy benchmark reflecting common business practice. Many online supermarkets offer

a mix of long and short time windows and price different time window options differently. Assigned

delivery fees differ among time window lengths and times of the day, and delivery fees remain static

throughout the booking process. Following this idea, with the benchmark, we assign a fixed set

of delivery fees to the offered short time windows, and we do not change them along the course of

the booking process. Short time windows that have shown to be more popular in the past will be

11



assigned higher delivery fees. Note that customers can anticipate these delivery fees easily.

3.4 Customer choice modeling with multiple time window lengths

The success of any pricing policy strongly depends on the customers’ acceptance of alternatives in the

current offer set. Therefore, retailers need to consider the expected customer behavior when developing

pricing policies. However, estimating choice behavior for attended home deliveries is not trivial: Customers

can choose from a plurality of delivery days and delivery options (at different lengths and prices) and may

decide not to book at all. Furthermore, customer decisions can be influenced by the current availability

and fee of time windows.

For our problem formulation, time window options are not only characterized via suitability, availa-

bility and the attached delivery fee, but also by their length: Each customer’s choice set of offered time

windows can contain multiple short and multiple long time windows. This creates interdependencies in the

choice probabilities that violate the often applied MNL model’s assumption of independence of irrelevant

alternatives (IIA). With IIA, it is assumed that the relative probability of each pair of choice alternatives

does not depend on the availability of a third alternative (Koppelman & Wen 1998). Since we are offering

time window options that overlap temporally (e.g., a long morning time window and several short morning

time windows in parallel), some demand from the long time window options could be cannibalised by the

short time window options. Hence, IIA is violated and we cannot follow standard MNL formulations any

more.

For our flexible pricing policies, we consider a nested logit (NL) model, in which groups of alternatives

are considered as “nests” (Hensher & Greene 2002; Koppelman & Wen 1998). The NL model assumes a

hierarchical structure of choice, where the first level depicts the choice for a group of alternatives (branches)

and the second level the choice for one alternative within each nest (twig) (Hensher & Greene 2002). The

customer’s utility can then be described as:

U(Twig) = U(Branch) ∗ U(Twig ‖ Branch). (1)

As offering a long time window that overlaps with offered short time windows clearly affects the odds

of time window choice, we consider long time windows as constituting one nest and short time windows as

constituting another nest of alternatives. The resulting NL model formulation contains four dimensions:

The suitability of a time window (where some time windows are more suitable to customers’ schedules than

others and some time windows are not suitable at all), the availability of a time window (where customers

can only choose alternatives available in the offer set), the price level for a particular alternative, and the

length of a time window (where a long time window can span multiple more or less suitable short time

windows).

Figure 1 presents the structure of the NL model that defines choice probabilities for each customer

depending on the current offer set Oj . Within the first level, each branch describes the customer’s proba-

bility for choosing a nest containing short (PS) or long (PL) time windows. The second level represents

the customer’s probabilities of choosing a specific alternative from the nests, i.e., the probabilities for each

of the short time window options {PS
1 ...PS

m}, the probabilities for choosing one of the long time window

options {PL
1 ...PL

n }, and the no-purchase probabilities PS
0 and PL

0 . Even though we only differentiate be-

tween long and short time windows, this nested logit model could also handle further differentiations of

time window lengths.

We outline the customer choice for a specific alternative out of an offer set in Section 3.4.1. In

Section 3.4.2, we explain how we extend the choice model to consider different time window lengths. In

Section 3.4.3, we demonstrate the implications of the choice model using an example.
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Figure 1: Nested Logit Model for customer choice of long and short time windows

3.4.1 Twig selection

Each nest contains a group of time windows of equal length, i.e., either long or short time windows. Hence,

within each nest, customer choice is only affected by suitability, availability and price of the options in an

offer set. Once the relevant branch has been determined, choice probabilities no longer depend on time

window length. We use a MNL formulation for describing the choice of one specific alternative, a twig. The

formulation follows Yang et al. (2014) and relies on four parameters. First, the base utility β0 indicates

the customers’ general likelihood of purchasing any alternative. This base utility is independent from the

current offer set. Next, a time window specific utility βt reflects that some of the alternatives are more

suitable than others. The value of βd describes the customer’s price sensitivity. The lower this value is, the

more customer choice is influenced by a tagged price. Lastly, the attached delivery fee dt of an alternative

is considered.

The probability of a customer choosing time window t ∈ S′ given offer set containing all feasible short

time windows s ∈ S′ can be described as:

PS
t =

exp(β0 + βt + βd ∗ dt)∑
s∈S′ exp(β0 + βs + βd ∗ ds) + 1

, (2)

and for choosing a long time window t ∈ L′ out of an offer set containing all feasible long time windows

l ∈ L′ (we consider dt=0 and dl=0 here):

PL
t =

exp(β0 + βt)∑
l∈L′ exp(β0 + βl) + 1

. (3)

The coherent no-purchase probability for short and long time windows is given by the following formula-

tions:

PS
0 =

1∑
s∈S′ exp(β0 + βs + βd ∗ ds) + 1

, (4)

PL
0 =

1∑
l∈L′ exp(β0 + βl) + 1

. (5)

3.4.2 Branch selection

The branch selection of long and short time windows relies on two assumptions, which we justify in this

section. These assumptions consider the impact of suitability, prices, and length of the offered alternatives

on the customer’s decision for a time window length. From a routing perspective, if a feasible insertion

position is found, we can always enclose this position with a time window, no matter if short or long.

Therefore, we can exclude the availability of time windows in the branch selection, since there is always a

feasible long time window if we can find a feasible short time window and vice versa.

Assumption 1. Customers prefer short over long time windows. The smaller the fee difference between

offered short and long time windows is, the more likely customers will choose a short time window.
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The assumption relates the length of time windows to attached delivery fees. As discussed above, customers

prefer short and cheap time window offerings. However, we assume that short time windows are more costly

for retailers and hence are always offered at higher delivery fees than parallelly offered long time windows.

Therefore, customers have to assess their individual cost-benefit-ratio between choosing a more expensive

high-quality short time window or a cheap long time window. Consequently, we assume that the smaller

the fees for the short time window offerings, the less likely a customer chooses a long time window. Higher

delivery fees nudge customers towards booking long delivery time windows. We will include a factor βw

within the branch selection that reflects how sensitive customers are in terms of their booking decision

between short and long time window options.

Assumption 2. Customers consider only suitable time window options out of the offer set for their booking

decision. The smaller the fee for a more suitable time window option, the more likely customers choose a

short time window.

Within the second assumption, we incorporate how delivery fees relate to the suitability of time windows.

This should reflect that customers do not include all available time window options within an offer set in

their booking decision, but only time window options that are suitable for them. Hence, higher or lower

delivery fees of suitable time window options should have a higher impact on a customer’s branch choice

than higher or lower delivery fees of unsuitable time window options. Since we do not know which specific

time window option would be the most preferable for each individual customer, we use time window utilities

to compute how likely it is that the customers’ branch choice is impacted through a high or low delivery

fee.

Formula 6 presents the resulting probability of choosing the nest containing the short time windows

when the feasible short time windows s ∈ S′ are offered:

PS =

∑
s∈S′ exp(β0 + βs + βw ∗ βd ∗ ds)∑

s∈S′ exp(β0 + βs)
. (6)

We first define a “perfect” short time window offering that we use as a baseline to compare to the customer’s

short time window options within an offer set. The denominator represents the baseline of offering short

time windows at no delivery costs, and only the base utility β0 and the time window’s utility βs need to

be included. Within the numerator, we consider the short time windows offered to a customer in terms

of delivery fee ds, price sensitivity βd and base utility β0 as well as specific time window utilities βs.

Additionally, we introduce βw, which reflects the sensitivity of customers regarding time window length.

This factor reflects the cost-benefit-ratio of a customer: the higher the value of βw, the more customers

are willing to pay for receiving a more explicit delivery promise, namely a short time window.

Subsequently, the branch probability for long time windows PL is

PL = 1− PS . (7)

3.4.3 Illustrative example of nested customer choice

In this section, we illustrate how our NL model works. To this end, Figure 2 shows four exemplary offer

sets. Each offer set contains one long and three short time windows. The long time window overlaps with

the three short time windows.

We assume an arriving customer to assign a base utility of β0 = 0 and a negative price sensitivity of

βd = −0.5 to all time window options. The short time window options vary in their suitability for the

customer. We assume that the short time windows have a utility of βS1 = −1.0, βS2 = 0 as well as βS3 = 1,

respectively. For the time window length sensitivity, we assume βw = 0.5. Now we can investigate the

impact of pricing on the branch probabilities for long and short time windows as presented in Formula 6.
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(a) Offer set I

FREE

0

0

0

(b) Offer set II

FREE

10

10

10

(c) Offer set III

FREE

10

0

0

(d) Offer set IV

FREE

0

0

10

(e) Branch probability I

0�00

1�00

P(L) P(S)

(f) Branch probability II

0�92
0�08

P(L) P(S)

(g) Branch probability III

0�09
0�91

P(L) P(S)

(h) Branch probability IV

0�61 0�39

P(L) P(S)

Figure 2: Example for time window offerings and the resulting branch probabilities

Offer sets I and II in Figures 2a and 2b exemplify Assumption 1. In the first offer set, all short time

windows are available for free. The short and long time window offering is now equivalent in terms of

suitability, availability and price, but the short time window offering is better in terms of length. Hence,

customers gain no utility by choosing the long time window, and the resulting branch probability is

P (L) = 0% as depicted in in Figure 2e. In the second offer set, all short time windows are offered at

a price of 10. Long and short time window options are now only equivalent in terms of suitability and

availability. They differ in terms of price and length. Since the price difference is high and the length

sensitivity βw = 0.5 implies that customers are not willing to pay much for a short time window, the

resulting branch probability for a long time window is now P (L) = 0.92 (see Figure 2f).

Offer sets III and IV (see Figures 2c and 2d) consider differentiated pricing of the short time windows.

Within offer set III, the least preferred time window is offered at a price of 10, and the other short time

windows are provided for free. Options included in the offer set now differ in terms of length, fee, and

suitability. Based on the time window utilities, it is more likely that short time window options 2 or 3 are

chosen by the customer. As depicted in Figure 2g, the branch probability of long time windows is only

P (L) = 0.09. Next, in Figure 2d, we can see that only the most preferred time window is offered at a fee

of 10 and the less favorable time windows are offered for free. Since it is very likely that the most popular

time window would have been the most suitable option to a customer, our model reflects this with an

increase in the branch probability for the long time window of P (L) = 0.61.
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4 Experimental settings

In this section, we introduce the metrics we use to evaluate our flexible dynamic time window pricing

policies. We also present our computational setup including assumptions on the customer choice model.

4.1 Metrics

Time window pricing affects two different stakeholders: retailers and customers. While the retailer wants

to maximize profit and accept as many customers as possible, customers are looking for inexpensive and

short time window options. The following four metrics will be used to show the benefits of flexible dynamic

time window pricing from a retailer’s as well as a customer’s perspective:

• total number of accepted customers (#accepted): We assume that each accepted customer adds a

value to the retailer’s business. This value may be explicit, e.g., the profit margin of a customer’s

order basket, or implicit, e.g., building a long-term customer relationship. Therefore, we consi-

der accepting as many customers as possible as one of the core retailer’s objectives when offering

attended home deliveries.

• fee revenue: For each customer accepted within a short time window, a particular delivery fee is

collected. Although the main purpose of delivery fees here is to nudge customers towards booking a

long or short time window, collecting a higher revenue from the charged delivery fee can help cover

the operational costs of the retailer. Hence, we will also evaluate the sum of collected fees at the

end of the booking process.

• total number of customers accepted in a short time window (#accepted short): Customers favor

short delivery time windows. Hence, we evaluate the number of customers that we accepted within

a short time window.

• mean fee: High delivery fees can lead to lower customer satisfaction and loosing customers in the

long run. Hence, we report the mean delivery fee that customers had to pay for booking a short time

window option. In conjunction with the number of customers accepted in a short time window, this

can give interesting insights on the quality of the proposed dynamic flexible time window pricing

policy from a customer’s perspective.

4.2 Computational setup

We consider an exemplary e-grocer operating in the inner city of Berlin, Germany. We define our delivery

area as a rectangle between longitude 13.3-13.5 and latitude 52.45-52.55, which overlays the inner city of

Berlin and reflects a dense distribution of customers in an urban area. We use a road network for this

area provided by OpenStreetMap. From this road network, we randomly select 400 nodes, which serve as

potential customer locations, and one fixed location for the depot. The travel times in minutes between

these nodes are determined with OSRM 1, an OpenStreetMap routing service. During the booking process,

whenever further 10 requests have been accepted, the tentative route plans are improved by an Iterated

Local Search procedure following Vansteenwegen et al. (2009), which enables fast improvement of existing

route plans.

Our time window design contains two long time window options of 4 hour length and 16 short time

window options of 30 minutes length. The first long time window starts at the same time as the first

short time window (aS
1 = an

L), and the last long time window ends at the same time as the last short time

window (aS
16 = aL

2 ).

1https://cran.r-project.org/web/packages/osrm/index.html
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Length t βt dFLEX
t (£) dBt (£)

Short

s1 -0.8230 {2, 4, 6, 8, 10} 4

s2 -0.7436 {2, 4, 6, 8, 10} 4

s3 -0.5746 {2, 4, 6, 8, 10} 4

s4 -0.3181 {2, 4, 6, 8, 10} 6

s5 0.1529 {2, 4, 6, 8, 10} 8

s6 0.1897 {2, 4, 6, 8, 10} 8

s7 0.7656 {2, 4, 6, 8, 10} 10

s8 0.9941 {2, 4, 6, 8, 10} 10

s9 0.4561 {2, 4, 6, 8, 10} 8

s10 0.9091 {2, 4, 6, 8, 10} 10

s11 0.1340 {2, 4, 6, 8, 10} 6

s12 -0.2514 {2, 4, 6, 8, 10} 6

s13 -1.2908 {2, 4, 6, 8, 10} 2

s14 -0.3500 {2, 4, 6, 8, 10} 6

s15 -0.6213 {2, 4, 6, 8, 10} 4

s16 -0.3435 {2, 4, 6, 8, 10} 6

Long
l1 -0.0446 0 0

l1 -0.1697 0 0

Table 1: Time window related settings, β0 = −2.8618, βd = −0.880

For the customer choice model, we adapt the values from Yang et al. (2014) with regard to the

specification of the base utility β0, the time window specific utility βt, and the price sensitivity βd. Following

Yang et al. (2014), we set β0 = −2.8618 and βd = −0.0880. Since Yang et al. (2014) consider only one

time window length, we adapt the time window specific utilities βt for our short time windows as shown in

Table 1. We assign utility values from −1.2908 (s13, least preferred short time window option) to 0.9941

(s8, most preferred short time window option) to our short time windows (s1–s16). However, since we

also include long time window options, we aggregate the values to match the enclosing long time window

options. For the first long time window, we assume a utility of βl1 = −0.0446, which is the mean of the

time window utilities s1–s8; for the second long time window, we assign a utility value of βl2 = −0.1697,
which is the mean of the utilities from s9–s16. Following the analysis of empirical order data from Yang

et al. (2014), we will use pound (£) in the following as monetary unit.

In Figure 3, we present the impact of the base utility as defined by Yang et al. (2014) on the customer

choice. We display how the probabilities of time window selection evolve if a customer is being offered all

time windows at the same time, but at different delivery fees. In this example, all short time windows are

offered for the same delivery fee of either £0, £2, or £10. The y-axis depicts the probabilities for each

time window option including the no-purchase option for short and long time windows (NoS, NoL). The

x-axis reflects the probability of choosing one alternative. Generally, it can be observed that adopting

the negative base utility results in a high non-purchase rate. In the left figure, we can see that although

all short time windows are offered for free, there is still a 50% probability that a customer will cancel

the booking process. If we increase the delivery fee for the short time windows to £10 (see right figure),

the non-purchase probability increases to almost 80%. These high non-purchase probabilities as provided

through analysis of empirical order data by Yang et al. (2014) may seem counter-intuitive at first. However,

Moe & Fader (2004) state that compared to offline shopping, the base utility for online shopping is usually

much smaller. Whereas a customer has to make at least some effort to go to a physical store, in the case

of online shopping, customers can search through product offerings with almost no effort at all. Hence,

for online shopping, it is more likely that customers cancel the booking process, come back later, or split

one purchase into multiple visits of the website, which results in a very low base utility. As a consequence,

for our computational setup, we choose a high number of requests, namely 500, resulting in about 60

customers that can be accepted in the end.

We also have to determine the value for βw reflecting the customers’ time window length sensitivity. In
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Figure 3: Choice probabilities of a customer when all time windows are available
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Figure 4: Branch probabilities for varying values of βw

Figure 4, we show the impact of different values of βw for the branch probability. The y-axis represents the

probability for one of the branches. The x-axis represents a request arriving during the booking process

(500 in total). Each continuous line shows the probability for the long time window branch, and each

dotted line the probability for the short time window branch. To present the impact of varying levels of

βw, we reduce the delivery fee for short time windows during the booking process. We can see that if

short time windows are offered at £10, the probability for choosing a long time window branch is around

60%, and if βw = 1.0, the resulting branch for the short time window is approximately 40%. When the

delivery fee for short time windows is reduced, the customers’ probability of choosing a short time window

increases. We assume that based on historical data, a retailer can estimate the value for βw. For our

experiments, we set βw = 1.5, which reflects that many customers would be willing to pay around £6 for

a short time window offering.

We define Q = 4 price points that can be assigned to flexibility stages to categorize the impact

of a current request on the route plan’s flexibility. The coherent stage boundaries are derived from a

computational study and are as follows: xToB
q = {0%, 25%, 50%, 75%}, xLoR

q = {0%, 0.7%, 1.4%, 2.1%},
xLoR
q = {0%, 25%, 50%, 75%}. We assume a discrete price function P that defines the delivery fee of a

short time window according to the measured flexibility within our tentative route plans. We consider

five possible delivery fee levels in Pounds (£), which are dm = {2, 4, 6, 8, 10}. We will test all price

configurations of assigning one of the five price levels to each of the four flexibility stages, with the exception

of assigning the same price level to all four stages, since this would reflect a static price assignment. In

total, we will test 54 − 5 = 620 different configurations P that reflect all variations of assigning the five
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I II III I V

2 2 2 4

2 2 2 6

2 2 2 8

2 2 2 10

2 2 4 2

2 2 4 4

2 2 4 6

2 2 4 8

... ... ... ...

10 10 8 4

10 10 8 6

10 10 8 8

10 10 8 10

10 10 10 2

10 10 10 4

10 10 10 6

10 10 10 8

Table 2: Price configuration variations

different prices to the four flexibility stages. Table 2 summarizes the investigated price configurations.

For the benchmark approach, we use the time window related utilities and also attach prices from

£2-10. Time windows with a higher demand will be offered for a higher delivery fee than time windows

attached with a lower utilitiy. The attached prices for the benchmark are presented in Table 1 (dBt ).

19



5 Computational results

In this chapter, we evaluate many configurations of our flexible dynamic time window pricing policies

considering the metrics presented in the previous section. First, we present example configurations and

analyze how they affect the corresponding booking processes. Then, we discuss the overall value of our

pricing policies and highlight which policies and policy configurations are best in terms of profitability

and better customer service. We also provide insights on the distribution of short time windows and set

delivery fees.

5.1 Example configurations of policies

Each flexible dynamic pricing policy will shape the sets of time windows offered during the booking process

differently. In the following, we present results of one exemplary booking process for each of our policies

with a price configuration of 10-8-4-2. Figure 5 shows the time windows offered to each of the 500 requests.

The y-axis depicts the available time windows (16 in total), and the x-axis represents the requests as posed

in the booking process. For each request, the color represents at which fee an available short time window

option was offered (£10: pink, £8: yellow, £4: green, £2: blue) or if a time window was not available for

booking (white).

In Figure 5a, with ToB, there is only one price at which short time windows are offered in each request’s

offer set. For early requests, all short time windows are available, but, in this configuration, only at a high

delivery fee of £10. Around request 120, 25% of the route capacity has been assigned, and ToB decreases

the delivery fee for short time windows to £8. Around customer 200, especially short time windows 6-9

have sold out for many of the posed requests, which is not surprising since these are among the most

popular ones. Around request 220, 50% capacity has been utilized, and the delivery fee is again decreased

to £4. From around request 300, most offer sets contain only four short time windows. However, these are

offered at a small delivery fee of only £2. As a result, flexibility stages as defined for ToB comprise more

than 100 requesting customers in the first stage, less than 100 requests in the middle stages, and more

than 200 requests in the last stage. This underlines the importance of considering actual route utilization

instead of fixed price patterns during the booking process.

In Figure 5b, the results of the LoR policy are shown, again for a configuration of 10-8-4-2. Since

LoR is a multi-price policy, there is no clear pattern for the assignment of delivery fees along the booking

process. For some requests, all time windows are offered at the same delivery fee, and for many other

requests, delivery fees differ according to the particular time window. Generally, compared to ToB, there

are relatively many cheap short time windows offered in the beginning (£2: blue). We can also see that

popular time windows are sold out earlier than with ToB. For instance, time windows 7 and 8 are not

available as early as around request 80. Late requesting customers can choose from only two time window

options on average.

Similar to ToB, the multi-price policy IoR also offers all available short time windows to all early

requests at a high delivery fee of £10, as can be seen in Figure 5c. IoR does not withheld popular time

windows with a high fee as ToB or the benchmark. However, already around request 30, short time

windows 5-8 are offered at a cheaper fee of only £8, and short time windows 9-16 even at £4. Here, we

can see that IoR forms “blocks’ of delivery fees’ of consecutive short time windows. We can also see that

time windows 13-16 are offered at a cheap fee of £2 from request 100 until almost request 400. Since these

are the more unpopular time window options, even attaching a small fee cannot influence many customer

requests to book these.
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(b) LoR (10-8-4-2)
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(c) IoR (10-8-4-2)

SH
O

R
T 

TI
M

E 
W

IN
D

O
W

S

CUSTOMER REQUESTS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 100 200 300 400 500

Figure 5: Exemplary booking process: Short time window offering for customer requests (£10: pink, £8: yellow, £4:
green, £2: blue, not available for booking: white)

5.2 Overall evaluation of policies

We begin with an evaluation of the performance of all configurations of our flexible dynamic pricing policies

and compare them to the performance of simple static pricing policies. The outcomes of all configurations

are presented in Figure 6 and in Tables 1-3 in the electronic appendix. Each dot represents the result

of one configuration. On the left hand side, in Figures 6a, 6c, 6e, we present #accepted and #accepted

short ; on the right hand side, in Figures 6b, 6d, 6f, we consider mean fee and fee revenue. For example,

the dot at the top in Figure 6a represents the results of a policy configuration for ToB with delivery

fees of £10 in flexibility stages I and II, and £2 in flexibility stages III and IV. The spline shown in all

figures marks the results created by static one-price policies with constant delivery fees of £2, 4, 6, 8

or 10, respectively. Additionally, in each figure, a marked circle represents the results provided by the

static multi-price benchmark B, for which delivery fees differ according to the popularity of particular time

windows, but remain constant throughout the booking process.

First, we investigate the general structure and value of dynamic flexible pricing considering #accepted

and #accepted short by looking at Figures 6a, 6c, 6e. The outcomes of the different configurations of the

static one-price policy indicate that neither constantly offering expensive short time windows for £10 nor

constantly offering cheap short time windows for £2 would be a good idea in order to maximize #accepted.

When short time windows are offered at a high delivery fee, many customers are not willing to book these

and cancel their request. When short time windows are offered at a very low fee, many customers book

them. However, these many short time windows reduce the routing flexibility significantly and the ability

to accept many customers for the retailer. The best results in terms of #accepted is achieved at a fee

of £6.

Generally, for all three flexibility pricing policies, we can find many configurations that clearly outper-

form the static one-price as well as the static multi-price policies. The static multi-price benchmark results

in a total of 58.1 #accepted with 35.7 #accepted short. All flexible pricing configurations highlighted in
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#accepted #accepted short mean fee fee rev

μ σ μ σ μ σ μ σ

58.1 4.48 35.7 3.66 6.72 0.27 240.32 25.80

Table 3: Benchmark

dark grey are superior to the static one-price policy. They are colored in light grey if they are inferior

with regard to #accepted or #accepted short. In particular, with ToB, there are many configurations

that achieve the same #accepted short as the static pricing, but ToB can accept more customers in total.

Similarly, there are configurations that have the same total #accepted as the static pricing, but are able

to accept many more in short time windows. The general acceptance pattern obtained with ToB seems

to be a higher #accepted (up to 59.8 in total). Only very few configurations create inferior results than

static pricing. For LoR, the performance pattern shifts towards the right side, indicating that many LoR

configurations can accept more #accepted short. For IoR, the acceptance pattern is more widely spread.

More configurations can be found that show a higher #accepted (between 58.5 and 59.5) compared to

ToB. However, there are also more configurations from IoR that produce worse results than ToB; choosing

a particular configuration seems to be more challenging for this approach.

We now want to focus on the metrics mean fee and fee revenue, see Figures 6b, 6d, and 6f. To enable

easy comparison with the results presented above, we mark the same configurations from 6a, 6c, and 6e in

dark grey. The spline representing the outcomes of different configurations of the static one-price policy is

now growing continuously, indicating that a higher revenue can be achieved when customers are charged

more for short time windows and vice versa, which is not surprising. With the benchmark policy, customers

have to pay a mean fee of £6.72, and the retailer collects a fee revenue of £240.32. With ToB, many price

configurations result in a higher fee revenue than static pricing although the retailer charges customers

less (to the right of the spline). For ToB and IoR, many configurations result in a higher fee revenue and

lower delivery fees compared to the corresponding configuration of the static one-price policy. For LoR,

only a few configurations can outperform static pricing; the most beneficial configuration for LoR has to

be defined carefully.

The patterns observed with different configurations of our policies reveal that there is significant value

in considering flexible dynamic pricing, especially when compared to simpler static pricing policies. Ho-

wever, interdependencies between the metrics clearly exist, and retailers have to decide on the importance

of each metric in the light of their particular business goals before selecting a particular policy and/or

policy configuration. We will analyze the trade-off between the metrics in comparison to results from the

benchmark policy in detail in the next section.

5.3 The best pricing policies

It is unlikely that there is a singular pricing strategy that is equally suitable for all stakeholders. Hence,

we will provide managerial insights on the best configurations of our flexible dynamic pricing policies

considering different objectives and constraints. We will analyze the trade-offs between the different metrics

and compare them to the results of the benchmark policy, which are contained in Table 3. In Tables 4–7,

out of all tested policies, we present the configurations that achieve the best results for one metric. We

also present configurations that achieve the best results for one metric while at least one other metric

does not perform worse than the benchmark. We list the top three price configurations for ToB, LoR,

and IoR with regard to finding best compromises. We report the mean results for each metric (μ), the

relative difference to the result obtained by the benchmark, and the standard deviation (σ) based on 1000

runs. The remaining four columns denote the configuration, i.e., which delivery fees are assigned to each

flexibility stage.
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(a) ToB: Accepted Customers
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(b) ToB: Delivery Fee
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(c) LoR: Accepted Customers
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(d) LoR: Delivery Fee
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(e) IoR: Accepted Customers

25 30 35 40 45 50

56

56.5

57

57.5

58

58.5

59

59.5

# ACCEPTED SHORT

# 
AC

CE
PT

ED

�

�	
�	

�	

��	

�

(f) IoR: Delivery Fee
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Figure 6: Flexible dynamic pricing policies compared to static one-price and multi-price policies
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Maximize profitability: maximize the number of accepted customers. In Table 4, we can see

the results of flexible dynamic pricing policies that maximize #accepted. ToB with a price configuration

of 10-10-2-2 is the winner and yields a maximum number of #accepted of 59.8. Implementing this configu-

ration would imply to offer expensive short time windows to all customers until about half of the delivery

capacity has been utilized, and then switch to low delivery fees of only £2. Compared to the benchmark,

this comes with an improvement of 7% #accepted short, mean fees reduced by 13%, but also a loss in fee

revenues of 7%. In addition to the winning configuration, we also consider the top three configurations

that maximize #accepted while not allowing the other metrics to decrease below the benchmark values.

Interestingly, #accepted does not vary much between the reported configurations (all between 2% and 3%

more than the benchmark). Therefore, improving the outcome of another metric simply depends on the

chosen configuration. We could increase #accepted short up to 12% with ToB and a price configuration of

8-10-2-2, or decrease the mean fee by 28% with IoR and a price configuration of 10-2-2-8 and still increase

#accepted by 3%. The standard deviation for IoR is slightly smaller, which indicates that variation in

booking streams seems to be handled better with IoR than with ToB.

Maximize service quality: maximize the number of customers accepted in a short time

window. The results for maximizing #accepted short are shown in Table 5. For this objective, in general,

static pricing works better than dynamic flexibility pricing, i.e., a retailer should simply offer short time

windows at low delivery fees. However, this would result in a decrease of #accepted and a huge loss in fee

revenues (-58%). ToB can help increasing #accepted short and keeping fee revenue stable. The best ToB

price configurations show more accepted customers, smaller delivery fees and/or fee revenues.

If the retailer wants to focus on increasing #accepted short and also achieve good results for #accepted

or mean fee, LoR can also provide good results. For instance, with a configuration of 8-8-2-2, LoR can

yield the same #accepted as the benchmark and increase #accepted short by 38%, which is analyzed in

detail in Figure 7a. We mark each of the 400 customer locations with a dot. The size of a dot represents

how often one customer location booked a short time window within 1000 runs. The color of each dot

represents the mean delivery fee for booking a short time window at this location. We can clearly identify

differences in the sizes of the dots, indicating a higher chance of booking a short time window especially

in the center and also in the southwest, which is accompanied by significant differences in the delivers

fees. Some locations only have to pay a mean of £2 (blue), whereas others in the outskirts have to pay a

mean of £8 (yellow). Apparently, with LoR, smaller detours in the center and southwest lead to a price

discrimination of requests located in the northeast. As this is a result of ongoing route planning, we can

see how important it is to consider real road networks when implementing dynamic pricing policies that

assign delivery fees according to the vicinity of customer location. Following the spatial discrimination of

short time windows in the delivery area, #accepted short increases by 41%.

Maximize profitability: maximize fee revenue. Table 6 shows the configurations that are be-

neficial when a retailer wants to maximize fee revenue. ToB with 10-10-6-6 is the winner and yields a fee

revenue that is 8% higher than the benchmark. However, there is a small loss of 1% #accepted. With the

same price configuration, IoR is able to keep fee revenue stable, not sacrifice #accepted, and provide more

stable results given different bookings streams (#accepted, σ=4.67). In Figure 7b, for this configuration,

we show that not only #accepted, but also the spatial distribution of short time window bookings and

fees is quite stable. However, small differences in delivery fees can again be seen between northeast and

southwest locations with southwest locations being slightly cheaper and having a slightly higher probability

of booking a short time window. Again, customers located in the center and in the southwest benefit from

the faster travel times with a slightly cheaper time window offering. Locations in the outskirts still have

about the same chances to book a short time window, but for a higher fee.

Maximize service quality: minimize delivery fees. The winner for solely minimizing delivery

fees is, again, a static pricing of £2. The results reported in Table 7 show the strong relationship between
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Figure 7: Spatial impact of flexible dynamic pricing policies

mean fee and fee revenue: If we want to charge customers as less as possible, then this limits improvements

of fee revenue to only 1% relative to the benchmark. However, with ToB and a configuration of 8-8-6-2, we

can increase the fee revenue by 1% while customers even have to pay less than with the benchmark. If the

retailer is willing to loose fee revenue to provide better customer service, then LoR with a configuration of

8-8-2-2 prevents sacrificing #accepted (38% more customers accepted and -63% lower fee revenues).

Summarizing, from the above observations, the following managerial insights can be obtained:

• If the objective is increasing #accepted and/or fee revenue, either ToB or IoR create the best results.

ToB works slightly better in general, but IoR provides more stable results given different booking

streams. However, only ToB is able to create better results in terms of higher fee revenue (as

indicated in Figure 6b). If the objective is increasing customer service by means of #accepted short

or mean fee while maintaining reasonable results for #accepted or fee revenue, then LoR should be

implemented.

• If both #accepted short and mean fee are important and the other metrics are negligible, then

flexible dynamic pricing is not effective. These metrics correlate, and a retailer can simply offer

cheap time windows throughout the whole booking process. Whenever metrics are considered that

have a non-linear or negative correlation with at least one of the other metrics, a trade-off exists,

and dynamic flexible pricing can outperform static pricing.

• The benefit of a significant improvement of one metric often goes hand in hand with a significant

deterioration of another metric. Hence, retailers have to decide how much improvement of one metric

can compensate the loss of another metric (e.g., can accepting one more customer outweigh a loss

in fee revenues?). However, we were able to identify many ToB configurations that could relatively

outperform the benchmark for all four metrics. We marked these with asterisks in Tables 4–7.

For example, ToB with a configuration of 10-8-4-2 (see Figure 5a) is contained in each of the four

Tables 4–7.

• For most of the selected superior price configurations, a higher (or at least equal) delivery fee is

charged in the first stages of the corresponding policies. We could observe regularly that there is a

huge price gap between stages II and III, which indicates that especially in stages I & II, the impact

of routing flexibility is high. These stages are hence crucial to keep routing flexibility, and it is

important to nudge customers towards booking a long time window for these stages. In conclusion,

although we considered many configurations, one general rule helps keeping flexibility: assigning
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#accepted #accepted short mean fee fee revenue price configuration
Policy μ ΔB σ μ ΔB σ μ ΔB σ μ ΔB σ I II III IV

Best ToB 59.8 3% 4.21 38.2 7% 4.13 5.84 -13% 0.53 222.54 -7% 25.35 10 10 2 2

Best | #accepted short ≥ 35.7
ToB 59.8 3% 4.21 38.2 7% 4.13 5.84 -13% 0.53 222.54 -7% 25.35 10 10 2 2
ToB 59.6 3% 4.15 40.0 12% 3.91 5.42 -19% 0.43 216.41 -10% 21.77 8 10 2 2
IoR 59.6 3% 4.03 39.7 11% 3.44 5.11 -24% 0.48 202.83 -16% 25.64 10 2 4 4

Best | mean fee ≤ 6.72
ToB 59.8 3% 4.21 38.2 7% 4.13 5.84 -13% 0.53 222.54 -7% 25.35 10 10 2 2
IoR 59.6 3% 4.03 39.7 11% 3.44 5.11 -24% 0.48 202.83 -16% 25.64 10 2 4 4
IoR 59.6 3% 4.20 39.1 10% 3.63 4.85 -28% 0.56 189.49 -21% 27.89 10 2 2 8

Best | fee revenue ≥ 240.32
ToB 59.3 2% 4.74 35.6 0% 4.44 6.82 1% 0.63 241.32 0% 26.14 10 10 4 2
ToB* 59.2 2% 4.29 37.9 6% 4.18 6.39 -5% 0.49 241.47 0% 23.08 10 8 4 2
ToB 59.2 2% 4.31 36.3 2% 3.74 6.76 1% 0.36 245.25 2% 24.17 10 8 4 4

Table 4: Best price configurations for #accepted

#accepted #accepted short mean fee fee revenue price configuration
Policy μ ΔB σ μ ΔB σ μ ΔB σ μ ΔB σ I II III IV

Best Static 57.2 -2% 3.83 50.4 41% 3.71 2.00 -70% 0 100.84 -58% 7.41 2 2 2 2

Best | #accepted ≥ 58.1
LoR 58.2 0% 4.17 49.1 38% 2.00 2.47 -63% 0.22 121.00 -50% 13.26 8 8 2 2
LoR 58.2 0% 4.14 49.1 38% 3.89 2.47 -63% 0.24 121.42 -49% 14.07 8 10 2 2
LoR 58.6 1% 4.06 49.0 37% 3.85 2.49 -63% 0.26 122.09 -49% 14.93 10 10 2 2

Best | mean fee ≤ 6.72
Static 57.2 -2% 3.83 50.4 41% 3.71 2.00 -70% 0 100.84 -58% 7.41 2 2 2 2
LoR 57.4 -1% 4.06 50.4 41% 3.81 2.07 -69% 0.05 104.18 -57% 8.09 4 2 2 2
LoR 57.5 -1% 4.11 50.2 41% 3.92 2.11 -69% 0.09 105.94 -56% 9.03 6 2 2 2

Best | fee revenue ≥ 240.32
ToB* 59.2 2% 4.29 37.9 6% 4.18 6.39 -5% 0.49 241.47 0% 23.08 10 8 4 2
ToB* 58.6 1% 4.79 37.1 4% 4.43 6.53 -3% 0.5 240.66 0% 23.79 10 6 6 2
ToB* 58.7 1% 4.97 36.8 3% 4.42 6.65 -1% 0.49 243.45 1% 22.6 8 8 6 2

Table 5: Best price configurations for #accepted short

#accepted #accepted short mean fee fee revenue price configuration
Policy μ ΔB σ μ ΔB σ μ ΔB σ μ ΔB σ I II III IV

Best ToB 57.8 -1% 5.36 30.9 -13% 3.83 8.41 25% 0.35 259.15 8% 29.26 10 10 6 6

Best | #accepted ≥ 58.1
ToB 58.6 1% 5.27 31.9 -11% 4.23 8.09 20% 0.50 256.51 7% 28.22 10 10 6 4
ToB 58.5 1% 5.02 33.9 -5% 4.16 7.57 13% 0.39 255.65 6% 26.76 10 8 6 4
IoR 58.2 0% 4.67 31.4 -12% 3.39 8.01 19% 0.30 251.86 5% 29.75 10 10 6 6

Best | #accepted short ≥ 35.7
ToB* 59.2 2% 4.31 36.3 2% 3.74 6.76 1% 0.36 245.25 2% 24.17 10 8 4 4
ToB* 58.7 1% 4.97 36.8 3% 4.42 6.65 -1% 0.49 243.45 1% 22.6 8 8 6 2
ToB* 59.2 2% 4.29 37.9 6% 4.18 6.39 -5% 0.49 241.47 0% 23.08 10 8 4 2

Best | mean fee ≤ 6.72
ToB* 58.7 1% 4.97 36.8 3% 4.42 6.65 -1% 0.49 243.45 1% 22.6 8 8 6 2
ToB* 59.2 2% 4.29 37.9 6% 4.18 6.39 -5% 0.49 241.47 0% 23.08 10 8 4 2
ToB* 58.8 1% 4.57 36.1 1% 4.08 6.70 0% 0.37 241.33 0% 25.29 8 10 4 4

Table 6: Best price configurations fee revenue

#accepted #accepted short mean fee fee revenue price configuration
Policy μ ΔB σ μ ΔB σ μ ΔB σ μ ΔB σ I II III IV

Best Static 57.2 -2% 3.83 50.4 41% 3.71 2.00 -70% 0 100.84 -58% 7.41 2 2 2 2

Best | #accepted ≥ 58.1
LoR 58.2 0% 4.17 49.1 38% 2.00 2.47 -63% 0.22 121.00 -50% 13.26 8 8 2 2
LoR 58.2 0% 4.14 49.1 38% 3.89 2.47 -63% 0.24 121.42 -49% 14.07 8 10 2 2
LoR 58.1 0% 4.07 48.9 37% 3.91 2.47 -63% 0.24 120.58 -50% 14.23 10 8 2 2

Best | #accepted short ≥ 35.7
- 57.2 -2% 3.83 50.4 41% 3.71 2.00 -70% 0.00 100.84 -58% 7.41 2 2 2 2
LoR 57.2 -2% 4.06 50.2 41% 3.78 2.06 -69% 0.05 103.40 -57% 7.93 2 4 2 2
LoR 57.4 -1% 4.06 50.4 41% 3.81 2.07 -69% 0.05 104.18 -57% 8.09 4 2 2 2

Best | fee revenue ≥ 240.32
ToB* 59.2 2% 4.29 37.9 6% 4.18 6.39 -5% 0.49 241.47 0% 23.08 10 8 4 2
ToB* 58.6 1% 4.79 37.1 4% 4.43 6.53 -3% 0.50 240.66 0% 23.79 10 6 6 2
ToB* 58.7 1% 4.97 36.8 3% 4.42 6.65 -1% 0.49 243.45 1% 22.6 8 8 6 2

Table 7: Best price configurations mean fee
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higher delivery fees in the beginning of the booking process or when customers are not in the vicinity

of a route plan. Our policies can help to refine this rule in the light of the current booking stream.

• When focusing on optimizing fee revenue or #accepted, the fee level is generally higher than observed

for price configurations optimizing the other two metrics. Hence, influencing customer choice and

increasing fee revenue is only achievable with charging higher prices for short time windows. In the

end, this is only possible if some customers are willing to pay higher delivery fees, which depends

on the customers’ price sensitivity.

27



6 Conclusion and future work

In this paper, we presented flexible dynamic pricing policies to allocate standard and premium delivery

options during a booking process when overall demand is unknown. We chose offering long and short time

window options as an illustrative example for this. We introduced three dynamic multi-price policies that

consider temporal and/or spatial characteristics of the evolving route plans to measure current routing

flexibility and to set time window fees for the premium delivery options accordingly. To mimic customer

choice behavior, we introduced a NL model that includes customer choice with time window options of

different lengths. We evaluated our flexible dynamic pricing policies in a real-world setting, considering

four metrics that take the perspective of the different stakeholders into account. Since there is no single

pricing strategy that is equally suitable for retailers and customers, we tested many price configurations

and compared the results to a static benchmark pricing that represents current business practice. We

analyzed when our policies can easily outperform the benchmark and presented many managerial insights

for different strategies that a retailer could follow. For instance, ToB and IoR achieve good results when

we want to maximize the number of accepted customers, whereas LoR provides best results if the focus is

on maximizing service quality.

The presented policies are easy to adapt by a retailer. However, each policy sets fees differently in the

course of the booking process. This can result in either a temporal or spatial discrimination of customers,

which may become a communication challenge for a retailer. For instance, with ToB, particularly early-

bird customers have to pay more when booking a short time window. Customers could learn to anticipate

cheaper time window offerings as provided by ToB and become strategic in their shopping behavior.

However, IoR provides very similar results as ToB, but assigns short time windows more fairly to customers;

since the fees charged for short time windows are based on routing mechanisms, this policy is not as easy

to learn for customers as ToB. Finally, implementing LoR would lead to a discrimination of customers

living in sparsely populated areas. We think that this could be communicated quite easily, because this

simply means that the delivery fees are cheap when there is a certain amount of orders being executed in

a customer’s neighborhood already.

The presented flexible dynamic pricing policies provide significant potential for further extensions.

For example, the policies could be extended to consider temporal and spatial flexibility characteristics

simultaneously. Additionally, further customer characteristics could be taken into account: for instance,

customers that restrict flexibility more but are still favored by a retailer, could receive a discount relative

to the measured flexibility impact. Furthermore, in this work, we are assuming there is sufficient time

and resources available to pick the orders from a store or warehouse before they are loaded on a truck to

be delivered to the customers; the only scarce resource is delivery capacity. In a multi- or omni-channel

environment where customers can decide between multiple channels such as picking up their order from a

brick-and-mortar store or having their order delivered to the front of their door, the time and resources

for preparing the order and making it available to the customers have to be considered more explicitly.

For example, if the orders for both pickup and delivery would be picked by the same staff members, there

would be a capacity on the time available, which also impacts the flexibility of the booking process. In the

end, this could impact the total number of deliveries that can be offered premium options and create new

decisions, such as deciding preferences on which types of customers’ orders should be prioritized.
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